Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.38, No.2, 135-141, 2000
SO2를 원소황으로 환원시키기 위한 담지 란타늄 촉매의 반응특성
Reduction of Sulfur Dioxide by CO to Elemental Sulfur over Supported Lanthanum Catalyst
γ-Al2O3, TiO2, SiO2와 NaY에 란타늄을 함침시켜 촉매를 제조하고, 고정층 미분반응기에서 CO에 의한 SO2 환원반응특성을 연구하였다. 이때 온도는 350-550℃ 영역에서, SO2 농도는 1,000-10,000 ppm [CO]/[SO2] 몰비를 1.0-3.0 공간속도를 4,000-12,000 h-1의 범위에서 조절하고 대기압 하에서 SO2 전환율과 반응선택성을 조사하였다. γ-Al2O3가 란타늄 담체로 우수한 특성을 나타내었으며, 10wt% 란타늄을 γ-Al2O3에 함침시켜 제조한 촉매는 450℃ 이상에서 95% 이상의 높은 SO2 전환율과 3% 이하의 COS 수율로 좋은 선택성을 나타내었다. [CO]/[SO2] 의 몰비는 양론비인 2.0이 적당한 것으로 나타났으며 [CO]/[SO2] 몰비가 2.0보다 큰 경우는 SO2 전환율은 증가하였으나 대부분의 생성물이 COS로 나타났다. 실험조건 영역에서의 공간속도나 SO2 농도의 변화는 SO2 전환율과 반응선택성에 큰 영향을 미치지 않았다. 활성화된 후의 란타늄은 La2O2S와 La2O2S2의 황화물 혼합상태로 존재하였으며, 반응 후에도 상변화는 관찰되지 않았다.
The reduction of SO2 by CO over supported lanthanum catalysts was studied at the temperature range of 350-550℃, with intial SO2 concentration of 1,000-10,000 ppm, [CO]/[SO2] molar ratio of 1.0-3.0 and space velocity of 4,000-12,000 h-1. We used γ-Al2O3, TiO2, SiO2 and NaY as the lanthanum carrier. We investigated the reaction activity and selectivity using a differential fixed bed reactor at atmospheric pressure. Results showed that γ-Al2O3 is the most effective carrier for the lanthanum catalyst. Over the catalyst prepared by impregnating to γ-Al2O3 with 10wt% lanthanum, SO2 conversion of higher than 95% and COS yield of lower than 3% were obtained at temperatures above 450℃. The optimum [CO]/[SO2] molar ratio was found to be 2.0. At the [CO]/[SO2]molar ratios higher than 2.0, the SO2 conversion was highly increased but the main product was COS. The variation of SO2 concentrations and space velocity in the experimental range did not affect appreciably on SO2 conversion and COS yield. X-ray diffraction results revealed that mixtures of La2O2S and La2O2S2 was observed after activation, and that the crystal phases were unchanged after reaction.
[References]
  1. Ma JX, Fang M, Lau NT, J. Catal., 163(2), 271, 1996
  2. Hibbert DB, Campell RH, Appl. Catal., 41, 289, 1988
  3. Jin Y, Yu Q, Chang SG, Environ. Prog., 16(1), 1, 1998
  4. Yoo KS, Chu KJ, Kim KT, J. Korean Soc. Environ. Eng., 20, 1191, 1998
  5. Liu W, Flytzani-Stephanopoulos M, "Elvironmental Catalysis," Armor, J.N. ed., ACS Symposium Series 552, American Chemical Society, Washington, DC, 375, 1994
  6. Kim H, Park DW, Woo HC, Chung JS, Appl. Catal. B: Environ., 19(3-4), 233, 1998
  7. Lee WS, Lee HK, Jo HD, Kim SG, Kim IW, HWAHAK KONGHAK, 34(6), 700, 1996
  8. Yoo KS, Jeong SM, Kim SD, HWAHAK KONGHAK, 37(2), 229, 1999
  9. Park BB, Rhee BS, HWAHAK KONGHAK, 37(2), 141, 1999
  10. Liu W, Sarofim AF, Flytzanistephanopoulos M, Appl. Catal. B: Environ., 4(2-3), 167, 1994
  11. Khalafalla SE, Hass LA, J. Catal., 24, 121, 1972
  12. Hass LA, Khalafalla SE, J. Catal., 29, 264, 1973
  13. Hass LA, Khalafalla SE, J. Catal., 30, 451, 1973
  14. Happel J. Hnaton MA, Bajars L, Kundrath M, Ind. Eng. Chem. Prod. Res. Dev., 14, 154, 1975
  15. Bagllo JA, Ind. Eng. Chem. Prod. Res. Dev., 21, 154, 1982
  16. Brazes JGI, Caretto LS, Nobe K, Ind. Eng. Chem. Prod. Res. Dev., 14, 164, 1975
  17. Hibbert DB, Campell RH, Appl. Catal., 41, 273, 1988
  18. Ma JX, Fang M, Lau NT, J. Catal., 158(1), 251, 1996
  19. Ma JX, Fang M, Lau NT, Appl. Catal. A: Gen., 150(2), 253, 1997
  20. Kim H, Park DW, Woo HC, Chung JS, Theor. Appl. Chem. Eng., 4, 121, 1998
  21. Sarlis J, Berk D, Ind. Eng. Chem. Res., 27, 1951, 1988
  22. Sarlis J, Berk D, Ind. Eng. Chem. Res., 27, 926, 1989
  23. Bobbrin AS, Anikeev VI, Yermakova A, Zheivot VI, Kirillov VA, React. Kinet. Catal. Lett., 40, 357, 1989
  24. Mulligan DJ, Berk D, Ind. Eng. Chem. Res., 31, 119, 1992
  25. Yu JJ, Yu QQ, Jin Y, Chang SG, Ind. Eng. Chem. Res., 36(6), 2128, 1997
  26. Paik SC, Chung JS, Appl. Catal. B: Environ., 5(3), 233, 1995
  27. Akhmedov MM, Ibragimov AA, Kasumova NM, Russ. J. Appl. Chem., 69, 999, 1996
  28. Paik SC, Kim H, Chung JS, Catal. Today, 38(2), 193, 1997
  29. Pinna F, Catal. Today, 41(1-3), 129, 1998