Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.38, No.1, 97-102, 2000
저온 플리즈마를 이용한 배가스 처리공정 파일럿 플랜트 연구
Pilot Plant Study on Non-Thermal Plasma Flue Gas Treatment Process
철광석 소결공정에서 배출되는 배가스로부터 SO2와 NOx를 동시에 제거하기 위하여 펄스 코로나 방전을 이용하는 저온 플라즈마 공정의 적용 가능성을 시험하였다. 본 연구는 파일럿 플랜트 규모로 수행되었다. 플라즈마 반응기의 전극 구조는 상용화된 전기집진기의 전극구조와 동일하게 구성하였다. 펄스 고전압을 발생시키는 펄스발생장치로서 자기펄스압축기를 사용하였다. 플라즈마 반응기에 저항을 병렬로 연결하여 펄스 폭을 1μs 이내로 줄일 수 있었으며, 저항에 인덕터를 직렬 연결하여 저항으로 흐르는 전류를 차단시켜 전력 손실을 최소화하였다. 이러한 방법으로 피크전압 110kV, 피크전류 2.3kA인 펄스 전력을 플라즈마 반응기에 공급할 수 있었다. SO2와 NOx의 제거효율을 향상시키기 위하여 암모니아와 프로필렌을 첨가제로 주입하였다. 본 연구의 펄스 코로나 방전 공정에서는 불과 3.0Wh/N㎥의 에너지밀도에서 배가스의 SO2와 NOx를 각각 95%와 60%이상 제거할 수 있었다.
A non-thermal plasma process using pulsed corona discharge was applied to the simultaneous removal of SO2 and NOx from an iron-ore sintering flue gas. This study was performed on a pilot scale, which is the most advanced demonstration of this process. The electrode structure of the plasma reactor is the same with that of conventional electrostatic precipitator. We made use of magnetic pulse compressor to produce high voltage pulse. the pulse length was reduced to less than 1μs by connecting a resister in parallel with the plasma reactor. An inductor was added to the resister in series to minimize the loss by restricting the current flowing through it. By this way, we were able to deliver pulse power with peak voltage of 110 kV and peak current of 2.3 kA to the plasma reactor. Additives such as ammonia and propylene were used to increase the removal efficiencies of SO2 and NOx. In this pulsed corona discharge process, the removal efficiencies of SO2 and NOx obtained at an energy density of only 3.0 Wh/N㎥ were 95% and 60%, respectively.
[References]
  1. Clements JS, Mizuno A, Finney WC, Davis RH, IEEE Trans. Ind. Appl., 25, 62, 1989
  2. Mizuno A, Shimizu K, Chakrabarti A, Dascalescu L, Furuta S, IEEE Trans. Ind. Appl., 31, 957, 1995
  3. Oda T, Kato T, Takahashi T, Shimizu K, IEEE Trans. Ind. Appl., 34, 268, 1998
  4. Shimizu K, Kinoshita K, Yanagihara K, Rajanikanth BS, Katsura S, Mizuno A, IEEE Trans. Ind. Appl., 33, 1373, 1997
  5. Song Y, Choi Y, Kim H, Shin W, Keel S, Chung S, Choi K, Choi H, Kim S, Chang K, J. Korea Air Pollut. Res. Assoc., 12, 487, 1996
  6. Vogtlin GE, Penetrante BM, "Non-Thermal Plasma Techniques for Pollution Control: Part B," Penetrante, B.M. and Schultheis, S.E., Eds, Springer-Verlag, 187, 1993
  7. Mok YS, Nam I, Chang RW, Ham SW, Kim CH, Jo YM, "Application of Positive Pulsed Corona Discharge to Removal of SO2 and NOx," in Proc. 7th International Conference on Electrostatic Precipitation, Hilton, Kyungju, South Korea, 270, 1998
  8. Masuda S, "Non-Thermal Plasma Techniques for Pollution Control: Part B," Penetrante, B.M. and Schultheis, S.E., Eds, Springer-Verlag, 131, 1993
  9. Dinelli G, Civitano L, Rea M, IEEE Trans. Ind. Appl., 26, 535, 1990
  10. Bhasavanish D, Ashby S, Deeney C, Schlitt L, "Flue Gas Irradiation using Pulsed Corona and Pulsed Electron Beam Technology," in Proc. 9th IEEE Pulsed Power Conference, Albuquerque, New Mexico, 441, 1993
  11. Civitano L, "Non-Thermal Plasma Techniques for Pullution Control: Part B," Penetrante, B.M. and Schultheis, S.E., Eds, Springer-Verlag, 103, 1993
  12. Penetrante BM, "Pollution Control Applications of Pulsed Power Technology," in Proc. 9th IEEE Pulsed Power Conference, Albuquerque, New Mexico, 1, 1993
  13. Rea M, Yan K, IEEE Trans. Ind. Appl., 31, 507, 1995
  14. Tokunaga O, Namba H, Suzuki N, Int. J. Appl. Radiat. Isot., 36, 807, 1985
  15. Baulch DL, Cox RA, Hampson RF, Kerr JA, Troe J, Watson RT, J. Phys. Chem. Ref. Data, 18, 881, 1989
  16. Seinfeld JH, "Air Pollution," McGraw-Hill, Inc., New York, 142, 1975