Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.38, No.1, 86-91, 2000
Cross-flow 막모듈을 이용한 Cyclodextrins의 효소적 생산과 동시 분리
Enzymatic Production and Simultaneous Separation of Cyclodextrins Using Cross-flow Membrane Module
Cross-flow 막모듈이 설치된 막 생물반응기를 사용하여 가용성 전분으로부터 cyclodextrins(CDs)의 효소적 생산과 동시분리에 대한 연구를 수행하였다. 이 결과 막 반응기는 CDs를 생산 즉시 cross-flow 막모듈을 통해 연속 분리시킴으로써 CDs의 효소 저해 및 선형 maltooligosaccharide로의 전환을 억제시켜 전분의 CDs로의 전환율을 37%로 일정하게 유지시킬 수 있었다. 10%(wt/vol) 전분용액, 2atm의 조작압력 및 60 mL/min의 순환유량 하에서 막 반응기를 24시간 동안 운전하였을 때 CDs의 막 단위 면적당 총 생산량은 6.7kg/㎡ 이었으며, 이때의 α-,β-,γ-CD 각각의 생산비는 약 4.4 : 5.5 : 1 이었다. Cross-flow 막모듈을 설치한 막 반응기에서의 CDs 전체의 생산량과 생산성은 dead-end 막모듈을 설치한 막 반응기의 경우보다 약 1.8-2배 증가하였다.
A study on the enzymatic production and simultaneous separation of cyclodxtrins(CDs) from soluble starch was performed in a membrane bioreactor equipped with the cross-flow membrane module. The conversion of starch to CDs was maintained at a constant value of 37%, since the cross-flow membrane module, in which the separation of CDs from the reaction solution was occurred, suppressed the product inhibition and the breakdown of CDs to the linear maltooligosaccharide. After the reaction for 24 hr using a 10% (wt/vol) solution, the produced amount of total CD per unit membrane area was about 6.7kg/㎡ at the operating pressure of 2 atm and the circulation rate of 600mL/min. Under these operating conditions, the production ratio of α-CD : β-CD : γ-CD was about 4.4 : 5.5 : 1. The produced amount and productivity of CDs in a membrane reactor equipped with the cross-flow membrane module were about 1.8-2 times higher than that in a membrane reactor equipped with the dead-end membrane module.
[References]
  1. Szejtli J, J. Mater. Chem., 7(4), 575, 1997
  2. Horikoshi K, Process Biochem., May, 26, 1979
  3. Villiers ACR, Acad. Sci. Paris, 112, 536, 1891
  4. Schardinger F, Untersuch Z, Nahrungs-Genussmittel Gebrauchsge-genstande, 6, 865, 1903
  5. Szejtli J, "Cyclodextrin Technology," Kluwer, Dordrecht, 1988
  6. Li S, Purdy WC, Chem. Rev., 92, 1457, 1992
  7. Lee JE, Choi YS, Kim DI, Korean J. Biotechnol. Bioeng., 12(1), 108, 1997
  8. Rendleman JA, Biotechnol. Appl. Biochem., 24, 121, 1996
  9. Vettler D, Thorn W, Brunner H, Konig W, Carbohydr. Res., 223, 61, 1992
  10. Kim TJ, Lee YD, Kim HS, Biotechnol. Bioeng., 41, 88, 1993
  11. Corn Products Co.: "Catalogue for Cyclodextrins," 1968, 1968
  12. Mifune A, Shima J, J. Org. Synth. Jpn., 35, 116, 1977
  13. Mulder M, "Basic Principles of Membrane Technology," 2nd ed., Kluwer, Dordrecht, 1996
  14. The Membrane Society of Korea: "Membrane Separation: Applications," Jayu Academy, Seoul, 1996
  15. Hong JK, Youm KH, Membrane, 8(3), 170, 1998
  16. Lejeune A, Sakaguchi K, Imanaka T, Anal. Biochem., 181, 6, 1989
  17. Kaneko T, Kato T, Nakamura N, Horikoshi K, J. Jpn. Soc. Starch Sci., 34, 45, 1987
  18. Kato T, Horikoshi K, Anal. Chem., 56, 1738, 1984
  19. Youm KH, Fane AG, Wiley DE, J. Membr. Sci., 116(2), 229, 1996
  20. Rendleman JA, Biotechnol. Appl. Biochem., 24, 129, 1996
  21. Kim TJ, Kim BC, Lee HS, Enzyme Microbial Tech., 20, 506, 1997