Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.38, No.1, 62-66, 2000
기상법에 의해 제조한 YAG : Cr 형광체
YAG : Cr Phosphor Prepared by Gas Phase Reaction Method
FEAG process를 사용한 분무열분해법에 의해 전자빔이나 UV에 의해 빨간색을 발생시키는 YAG : Cr 형광체 입자를 제조하고 그 특성들을 조사하였다. 질산염 혼합용액으로부터 분무열분해법에 의해 제조된 입자들은, 1,100도의 낮은 열처리 온도에서도 순수한 YAG 결정을 얻을 수 있었다. 제조된 입자들은 밀링과정을 거치지 않고도 구형의 형태를 가졌으며, 서브마이클론 크기의 균일한 크기분포를 나타내었다. 용액의 총 농도가 0.01에서 0.2M까지 변화시킬 때 CPSA로부터 측정한 입자들의 평균크기는 0.34에서 0.83㎛까지 증가했다. 제조한 입자들을 1,200도에서 5시간 열처리했을 때는 원래의 구형의 형태를 유지하고 있으나 1,400도에서는 구형의 형태가 사라지면서 입자들간의 응집현상이 나타나고, 1,500도에서는 입자들간의 응집이 완전히 일어났다. Cr의 도핑농도가 2 at%일 때 가장 좋은 발광특성을 나타냈다. YAG : Cr 입자의 발광 특성에 가장 좋은 열처리 온도는 1,400도였다.
Chromium-doped Yttrium Aluminum Garnet (YAG) phosphor particles, which generate red light when excited with e-beam or UV, were prepared from mixed nitrate solutions by spray pyrolysis using the FEAG process, and their characteristics were investigated. The prepared particles had an amorphous phase, which turned into phase pure YAG particles after annealing above 1,100℃. The prepared particles had spherical morphology, submicron size, and narrow size distribution without milling process. The mean size of the YAG : Cr particles varied from 0.34 to 0.83㎛ when the overall solution concentrations were changed from 0.01 to 0.2 M. The particles calcined below 1,200℃ maintained spherical morphology, but aggregation between particles was occurred after calcination above 1,400℃. The particles calcined at 1,500℃ had hard aggregation. The optimum doping concentration of Cr and calcination temperature for the maximum brightness of phosphor particles was 2 at% and 1,400℃, respectively.
[References]
  1. Scholl MS, Trimmier JR, J. Electrochem. Soc., 133(3), 643, 1986
  2. Robbins DJ, Cockayne B, Cullis AG, Glasper JL, J. Electrochem. Soc., 129(4), 816, 1982
  3. Lopez OA, McKittrick J, Shea LE, J. Lumin., 71, 1, 1997
  4. Kuck S, Pohlmann U, Petermann K, Huber G, Schonherr T, J. Lumin., 60-61, 192, 1994
  5. Jia W, Liu H, Wang Y, Hommerich U, Eilers H, Hoffman KR, Yen WM, J. Lumin., 60-61, 158, 1994
  6. Berkstresser GW, Shmulovich J, Huo TCD, Matulis G, J. Electrochem. Soc., 134(10), 2624, 1987
  7. Ohno K, Abe T, J. Electrochem. Soc., 141(5), 1252, 1994
  8. Ohno K, Abe T, J. Electrochem. Soc., 134(8), 2072, 1987
  9. Ohno K, Abe T, J. Electrochem. Soc., 133(3), 638, 1986
  10. Yamaguchi O, Takeoka K, Hayashida A, J. Mater. Sci. Lett., 10, 101, 1990
  11. Ravichandran D, Roy R, Chakhovskoi AG, Hunt CE, White WB, Erdei S, J. Lumin., 71, 291, 1997
  12. Rao RP, J. Electrochem. Soc., 143(1), 189, 1996
  13. Veith CD, J. Mater. Sci., 26, 6527, 1991
  14. Yan MF, Huo TCD, J. Electrochem. Soc., 134(2), 493, 1987
  15. Nyman M, Caruso J, Hampden-Smith MJ, Kodas TT, J. Am. Ceram. Soc., 80(5), 1231, 1997
  16. Kang YC, Park SB, J. Mater. Sci., 31(9), 2409, 1996
  17. Kang YC, Park SB, J. Aerosol Sci., 26(7), 1131, 1995