Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.38, No.1, 38-42, 2000
몬테카를로 기법을 이용한 이산화티탄늄 표면에 대한 올소인산 흡착에 관한 모사연구
Simulation on the Orthophosphates Adsorption on Titanium Dioxide Surface by Monte Carlo Method
이산화티탄늄 표면에 대한 올소인산의 흡착능을 몬테카를로 모사기법을 이용하여 연구하였다. 컴퓨터모사에서 고려된 변수는 흡착제인 이산화티탄늄 흡착면 특성, 원자분포와 흡착질인 올소인산의 전하량, 원자간의 거리, 각도이며 그 결과를 타일형 이산화티탄늄이 아나타제형 이산화티탄늄보다 흡착능력이 우수하며 특히 룰타일형 이산화티탄늄에서도 밀러지수(110)면의 흡착능이 가장 우수하다는 사실을 알았다. 따라서 흡착능을 높이기 위해서는 (110)면의 표면분포가 넓은 이산화티탄늄을 흡착제로 선택하는 것이 바람직하다. 이산화티탄늄 표면에 대한 올소인산 흡착능력에 영향을 미치는 주요한 힘은 정전기력이며 이 힘을 높이기 위해 수용액의 pH, 교반속도, 온도, 농도 등의 흡착조건을 조절하는 것이 필요하다는 것을 제안한다.
Computer simulations of the orthophosphates adsorption on titanium dioxide surface were carried out by Monte Carlo method. On computer simulations, considered variables were adsorbed plane properties, atoms distribution of titanium dioxide (adsorbent) and charges, lenghs between atoms, and angles of orthophosphates(adsorbate). The result showed that in terms of adsorbability, rutile type of titanium dioxide was superior to anatase type and the adsorbability of Miller index (110) plane was especially better than any other plane in rutile type of titanium dioxide. Therefore, it is reasonable to select the titanium dioxide of which surface range of Miller index (110) plane is large in order to improve the adsorbability of titanium dioxide. Electrostatic interaction energy is the main force which affects the adsorbability of orthophosphates on titanium dioxide. It is necessary for the enhancement of electrostatic interaction energy to control the adsorption conditions, that is pH, agitating speed, temperature, concentration, and so on in aqueous solutions.
[References]
  1. Boddenberg B, Eltzner K, Langmuir, 7, 1498, 1987
  2. Castonguary LA, Rappe AK, J. Am. Chem. Soc., 114, 5832, 1992
  3. Cerius2, MSI, San Diego, 1997
  4. Dibenedetto AT, "The Structure and Properties of Materials," McGraw-Hill Book Co., New York, NY, 1967
  5. Dupont Inc.: "Technical Reports for Titanium Dioxide," New York, NY, 1992
  6. Fahmi A, Minot C, Surf. Sci., 304, 343, 1994
  7. Filippov LK, Silebi CA, Elaasser MS, Langmuir, 11(3), 872, 1995
  8. Gamble L, Hugenschmidt MB, Campbell CT, Jurgen TA, Rogers JW, J. Am. Chem. Soc., 115(25), 12096, 1993
  9. Heermann DW, "Computer Simulation Methods in Theoretical Physics," Berlin, 1986
  10. Hong SD, Ph.D. Dissertation, Korea Advanced Institute of Science and Technology, Seoul, Korea, 1991
  11. Irick G, J. Appl. Polym. Sci., 16, 2337, 1972
  12. Moore WJ, "Basic Physical Chemistry," Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1983
  13. Rappe AK, Casewit CJ, Colwell KS, Goddard WA, Skiff WM, J. Am. Chem. Soc., 114, 10024, 1992
  14. Rappe AK, Goddard WA, J. Phys. Chem., 95, 2258, 1991
  15. Suda Y, Morimoto T, Nagao M, Langmuir, 3, 99, 1987
  16. Wu MC, Moller PJ, Chem. Phys. Lett., 171(1), 136, 1990
  17. Fuga S, "New Technology of Functional Filler," Research Center of International Industrial Information, Tokyo, 1993