Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.37, No.6, 863-869, 1999
수평다공성 매질내에서 자연대류에 의한 구리이온의 물질전달에 관한 연구
A Study on the Mass Transport of Copper Ions Induced by Natural Convection in a Horizontal Porous Layer
본 연구에서는 수평다공성 유체층에서 유발되는 자연대류에 의한 물질전달 상관식을 이론적으로 유도하고, 실험을 통하여 이론식에서 도출된 계수들을 결정하였다. 이를 위하여 실험에서는 다공성 매질에 포화된 황산구리-황산용액내의 구리이온에 대하여 전기화학적 방법을 통하여 확산 또는 자연대류에 의한 물질전달실험을 수행하였다. 한편 다공성 유체층에 대한 Forchheimer 유동식에 대하여 미세난류모델을 적용하여 물질전달상관식을 이론적으로 유도하였으며, 그 결과 부력에 의한 추진력이 커질수록 전달상관식은 Darcy-Rayleigh수의 1/2승에 비례하는 것으로 나타났다. 전기화학실험을 통해 산출된 계수들을 적용하면 다공성 매질내에서 구리이온의 자연대류 물질전달 상관식은 다음과 같다. sh = 0.000101(Scp. Rap)1/2/1-9.013(Scp .RaD)-1/10 본 연구의 결과는 실험치와 잘 부합되었으며, 모델식의 원형은 물질전달단계는 물론 열전달계에서도 효 과적으로 활용될 수 있을 것이다.
In the present study, the correlation of mass transport induced by natural convection in a horizontal porous layer has been derived theoretically. The coefficients appearing in the theoretical correlation were determined by experimental data. In the experiment, the mass transport of copper ions in CuSo4-H2SO4 solution was conducted by the electrochemical technique controlling diffusion and natural convection. The theoretical correlation for mass transport in a horizontal porous layer satisfying Forchheimer''''s flow equation was based on the microturbulence model. The resulting equation was proportional to the 1/2 power of Darcy-Rayleigh number as the magnitude of buoyancy forces increases. For the electrochemical system of copper ions, the mass transport correlation induced by natural convection is proposed as sh = 0.000101(Scp. Rap)1/2/1-9.013(Scp .RaD)-1/10 The present correlation looks fairly reasonable by comparing experimental results, and very promising for the applications of its prototype into various systems involving heat transfer as well as mass transfer, effectively.
[References]
  1. Brett CMA, Brett AMO, "Electrochemistry: Principles, Methods, and Applications," Oxford Univ. Press, Oxford, 1993
  2. McHardy J, Ludwig F, "Electrochemistry of Semiconductors and Electronics: Processes and Devices," Noyes Publications, New Jersey, 1992
  3. Nield DA, Bejan A, "Convection in Porous Media," Springer Verlag, New York, 1992
  4. Foster TD, Phys. Fluids, 8, 1249, 1965
  5. Choi CK, Shin CB, Hwang ST, Proc. 8th Int. Heat Transfer Conf., 3, 1389, 1986
  6. Long RR, J. Fluid Mech., 73, 445, 1976
  7. Cheung FB, J. Fluid Mech., 97, 734, 1980
  8. Arpaci VS, Adv. Heat Transfer, 30, 1, 1997
  9. Yoon DY, Choi CK, Korean J. Chem. Eng., 6(2), 144, 1989
  10. Yoon DY, Ph.D. Thesis, Seoul National University, 1990
  11. Kim MC, Baik JS, Hwang IG, Yoon DY, Choi CK, Chem. Eng. Sci., 54(5), 619, 1999
  12. Patrick MA, Wragg AA, Int. J. Mass Transfer, 18, 1397, 1975
  13. Mizushina T, Adv. Heat Transfer, 7, 87, 1971
  14. Ibl N, Comprehensive Treatise Electrochem., 6, 1, 1983
  15. Levich VG, "Physicochemical Hydrodynamics," Prentice-Hall, New Jersey, 1962
  16. Yoon DY, Kim MC, Choi CK, 11th International Heat Transfer Conf., Paper No. NC37, 1998
  17. Yoon DY, Kim MC, Choi CK, J. Korean Electrochem. Soc., 2, 98, 1999
  18. Fenech EJ, Tobias CW, Electrochim. Acta, 2, 311, 1960
  19. Selman JR, Newman J, J. Electrochem. Soc., 118, 1070, 1971