Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.42, No.3, 362-367, 2004
팽창흑연의 오일 흡착특성에 관한 연구
A Study on Oil Adsorption of Expanded Gaphites
층상화합물(GICs)로부터 제조된 팽창흑연(EG)은 팽창부피, 삽입제의 삽입률 그리고 오일 흡착특성에 관하여 조사하였다. EG의 팽창부피와 삽입제의 삽입률은 각각 메스실린더와 열처리 전과 후의 GICs 무게차로부터 정의하였다. 실험 결과, EG의 팽창부피와 삽입제의 삽입률은 열처리 온도와 주입된 산소 함량의 증가와 함께 증가하는 것을 관찰할 수 있었다. XRD 분석 결과, GICs의 XRD 패턴은 성공적인 황산 삽입제의 삽입에 의하여 천연흑연의 d002값이 사라졌으며, EG의 XRD 패턴은 열처리에 의한 삽입제의 분출로 인하여 다시 천연흑연의 d002값을 나타내는 것을 확인할 수 있었다. EG의 오일 흡착 실험결과, 오일 흡착량은 1 g의 EG에 대해 30g의 n-dodecane을 흡착하였다. 이러한 결과는 EG의 커다란 층간 사이의 공간과 EG의 제조시 증가된 다공성 표면에 의한 모세관 효과에 의한 것으로 판단된다.
The expanded graphites (EG) prepared from graphite intercalation compounds (GICs) were investigated in expansion volume, loaded intercalant content, and oil adsorption behaviors. The expansion volume and loaded intercalant content of EG were measured by graduated cylinder and gravimetry of GICs, respectively. As a result, the expansion volume and loaded intercalant content of EG were increased with increasing the treatment temperature or the oxygen amount during the preparation of EG. From XRD analysis, the pattern of GICs showed that the d002 reflection of natural graphites was disappeared in a successful intercalation by the sulfuric acid as an intercalant. And, the original d002 reflection was again shown in the EG made by intercalant ejection during heating. The oil adsorption capacity of EG was found to be a maximum 30 g of ndodecane per 1 g of EG. It was noted that the oil adsorption behaviors were attributed to the capillary effect of large interparticle space in EG, resulting from increasing the cleavage-like pores on the EG surfaces.
[References]
  1. Celzard A, Schneider S, Mareche JF, Carbon, 40(12), 2185, 2002
  2. Wanci S, Shizhu W, Naizhen C, Carbon, 37(2), 356, 1999
  3. Tryba B, Przepiorski J, Morawski AW, Carbon, 41(10), 2012, 2002
  4. Inagaki M, Suwa T, Carbon, 39(6), 915, 2001
  5. Celzard A, Mareche JF, Furdin G, Carbon, 40(14), 2713, 2002
  6. Yoshid A, Hishiyama Y, Inagaki M, Carbon, 29(8), 1227, 1991
  7. Shen JW, Chen XM, Huang WY, J. Appl. Polym. Sci., 88(7), 1864, 2003
  8. Chen GH, Wu CL, Weng WG, Wu DJ, Yan WL, Polymer, 44(6), 1781, 2003
  9. Boehm HP, Carbon, 40(2), 145, 2002
  10. Toyoda M, Inagaki M, Carbon, 38(2), 199, 2000
  11. Westermeyer WE, Environ. Sci. Technol., 25(1), 196, 1991
  12. Inagaki M, Kawahara A, Nishi Y, Iwashita N, Carbon, 40(9), 1487, 2002
  13. Nishi Y, Iwashita N, Sawoda Y, Inagaki M, Water Res., 36(20), 5029, 2002
  14. Chol HM, Cloud RM, Environ. Sci. Technol., 26(4), 772, 1992
  15. Shimizu T, Koshiro S, Yamada Y, Tada K, J. Appl. Polym. Sci., 65(1), 179, 1997
  16. Inagaki M, Kawahara A, Konno H, Carbon, 40(1), 105, 2002
  17. Zheng W, Wong SH, Compos. Sci. Technol., 63(2), 225, 2003
  18. Toyoda M, Moriya K, Aizawa J, Konno H, Inagaki M, Desalination, 128(3), 205, 2000
  19. Xiao M, Sun LY, Liu JJ, Li Y, Gong KC, Polymer, 43(8), 2245, 2002
  20. Kang F, Zheng YP, Wang HN, Nishi Y, Inagaki M, Carbon, 40(9), 1575, 2002
  21. Venkataraman B, Breen JJ, Flynn GW, J. Phys. Chem., 99(17), 6608, 1995
  22. Martin DS, Weightman P, Gauntlett JT, Surf. Sci., 398(3), 308, 1998
  23. Park SJ, Kim KD, Carbon, 39(11), 1741, 2001
  24. Park SJ, Jung WY, J. Colloid Interface Sci., 243(2), 316, 2001
  25. Park SJ, Jang YS, J. Colloid Interface Sci., 249(2), 458, 2002
  26. Toyoda M, Nishi Y, Iwashio N, Inagaki M, Desalination, 151(2), 139, 2003