Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.42, No.3, 338-344, 2004
졸-겔법에 의한 티탄산바륨 제조에 관한 연구
Synthesis of BaTiO3 Particles by Sol-Gel Method
본 연구에서는 졸-겔법을 이용하여 BaTiO3미분체를 제조하였다. TIP에 비하여 약 4배 정도의 AcOH가 TIP분자 변형에 참가하였으며, 이와 같은 반응을 통하여 TIP의 배위체는 4에서 6으로 증가하였다. TIP와 AcOH의 반응에 의하여 생성된 티타닐아실레이트에 첨가된 물은 Ti와 monodentate로 결합되어 있던 이소프로필기를 제거하였다. Ba과 아세테이트 결합은 강염기 조건에서도 완전히 해리되지 않았으며, 따라서 최종 생성물에는 BaTiO3상과 바륨 아세테이트와 유사한 구조를 갖는 제 2상이 공존하였다. 그리고 바륨 옥살레이트와 탄산칼륨이 중간상으로 존재하였다. [AcOH]/[TIP]의 비가 증가할수록 제조된 BaTiO3의 결정성은 감소하였으며, 최종입자는 미세입자의 응집에 의하여 생성되었다.
In this study, spherical BaTiO3 particles are prepared by sol-gel method. From fourier transform infrared analysis, it was found that a molar ratio of [AcOH]/[TIP] = 4 participated in TIP modification reaction and the coordination number of Ti increased to 6 by the modification reaction. Water added in the titanyl acylate removed the isopropyl groups bonded to titanium atoms by monodentate mode. From the FT-IR and XRD analysis for various solutions and barium acetate solid, it was found that Ba-OAc bonds are not readily removed even in a strong alkaline solution. BaTiO3 and pseudo-barium acetate phases were found to coexist in as prepared powders. Barium oxalate and potassium carbonate intermediate phases formed during the thermal treatment of as-prepared powders due to decomposition of the pseudo-barium acetate phases. Crystallinity of BaTiO3 particles decreased along with increasing [AcOH]/[TIP] ratio and the final powders were produced by aggregation of the fine particle.
[References]
  1. Kim SW, Lee MH, Noh TY, Lee C, J. Mater. Sci., 31(14), 3643, 1996
  2. Yoko T, Kamiya K, Tanaka K, J. Mater. Sci., 25, 3922, 1990
  3. Sharma HB, Mansingh A, J. Mater. Sci., 33(17), 4455, 1998
  4. Clark IJ, Takeuchi T, Ohtori N, Sinclair DC, J. Mater. Chem., 9, 83, 1999
  5. Ciftci E, Rahaman MN, Shumsky M, J. Mater. Sci., 36(20), 4875, 2001
  6. Hennings D, Schreinemacher S, J. Eur. Ceram. Soc., 9, 41, 1992
  7. Davies JA, Dutremez A, J. Am. Ceram. Soc., 73, 1429, 1990
  8. Bhattacharjee S, Paria MK, Maiti SH, Ceram. Int., 18, 295, 1992
  9. Her YS, Matijevic E, Chon MC, J. Mater. Res., 11, 3121, 1996
  10. Gherardi P, Matijevic E, Colloids Surf., 32, 257, 1988
  11. Phule PP, Risbud SH, J. Mater. Sci., 25, 1169, 1990
  12. Cho WS, J. Phys. Chem. Solids, 59, 659, 1998
  13. Kao CF, Yang WD, Mater. Sci. Eng. B, 38, 127, 1996
  14. Doeuff S, Henry M, Sanchez C, Livage J, J. Non-Cryst. Solids, 89, 206, 1987
  15. Nakamoto K, "Infrared and Raman Spectra of Inorganic and Coordination Compounds," 5th ed, Wiley Press: New York, 1997
  16. Brakley DC, Mehrotra RC, Gaur DP, "Metal Alsoxides," Academic Press, New York, 1978
  17. Niyogi DD, Singh S, Saini A, Verma RD, J. Fluor. Chem., 66, 153, 1994
  18. Yoko T, Kamiya K, Tanaka K, J. Mater. Sci., 25, 3922, 1990
  19. Mosset A, Gautier-Luneau I, Galy L, J. Non-Cryst. Solids, 100, 339, 1988
  20. Lambert JB, Shurvell HF, Lightner D, Cooks RG, "Introduction to Organic Spectroscopy," New York: Macmillan, 175, 1987
  21. Nyquist RA, Putzig CL, Leugers MA, "Handbook of Infrared and Raman Spectra of Inorganic Compounds and Organic Salt," Vol. 4, Academic Press, 257, 1996
  22. Cho WS, J. Phys. Chem. Solids, 59, 659, 1998
  23. Kumar S, Messing GL, White WB, J. Am. Ceram. Soc., 76, 617, 1993