Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.42, No.3, 288-295, 2004
TiO2 함유 활성탄소섬유의 기공특성
Pore Characteristics of TiO2-Containing Activated Carbon Fibers
TiO2을 각각 0.17, 0.34, 0.5 wt% 함유시킨 피치계 산화섬유를 제조하고 이를 탄화 및 수증기 활성화하여 TiO2함유 활성 탄소섬유를 만들면서 활성화조건에 따른 기공특성을 조사하였다. TiO2을 함유하면 함유하지 않은 탄소섬유보다 burn-off가 가속되었는데 이는 TiO2의 촉매적 산화가 탄소의 활성화를 촉진시키고 활성화에너지를 낮추었기 때문이다. TiO2가 0.5 wt%함유되면 탄소섬유의 활성화에너지는 함유하지 않았을 때의 194 kJ/mole에서 140 kJ/mole로 감소하였고, 비표면적은 1,550 m2/g에서 1,155 m2/g로 감소하는 반면 평균기공크기는 18 Å에서 26 Å으로 증가하였다. TiO2함유량이 증가할수록 평균세공크기는 더 커진다. TiO2입자는 활성탄소섬유의 표면 및 내부에 비교적 고르게 분포되어 있으며, TiO2(anatase)상태로 존재함을 확인할 수 있었다.
Titanium oxide (TiO2)-containing activated carbon fibers (ACFs) were prepared by carbonization and steam activation of the 0.17, 0.34, 0.5 wt% TiO2-containing oxidized pitch fibers and characterized the microporosity depending on the activation conditions. The burn-off of the TiO2-containing carbon fiber was accelerated by the catalytic oxidation of TiO2 to carbon. When the carbon fiber contained 0.5 wt% TiO2, the activation energy of carbon fiber decreased from 194 kJ/mole to 140 kJ/mole, the specific surface area was reduced from 1,550 m2/g to 1,155 m2/g, while the average pore size increased from 18 Å to 26 Å due to this catalytic oxidation. The average pore size can be far enlarged by increasing the TiO2 content. TiO2 particle was confirmed to anatase and homogeneously distributed throughout the activated carbon fibers.
[References]
  1. Ryu SK, High Temperature High Pressure, 22, 345, 1990
  2. Imamura R, Matsui K, Ozaki J, Oya A, "Deodorization of Alkaline Gas with Phosphorous Supported ACF," International Conference on Carbon Science and Technology for New Carbons, Nov., Tokyo, 1998
  3. Oya A, Yoshida S, Alcaniz-Monge J, Linares-Solano A, Carbon, 33(8), 1085, 1995
  4. Oya A, Yoshida S, Alcaniz-Monge J, Linares-Solano A, Carbon, 34(1), 53, 1996
  5. Yim KS, Eom SY, Ryu SK, Edie DD, HWAHAK KONGHAK, 41(4), 503, 2003
  6. Ryu SK, Kim SY, Gallego N, Edie DD, Carbon, 37, 1619, 1999
  7. Wang YL, Wan YZ, Dong XH, Cheng GX, Tao HM, Wen TY, Carbon, 36(11), 1567, 1998
  8. Ozaki J, Endo N, Ohizumi W, Igarashi K, Nakahara M, Oya A, Carbon, 35(7), 1031, 1997
  9. Hisashi T, Takeshi Y, Masahiko S, Hajime Y, Carbon, 37(6), 983, 1999
  10. Fujishima A, Rao TN, Tryk DA, J. Photochem. Photobiol., 1, 1, 2000
  11. Jung SC, Kim SC, Seo SG, HWAHAK KONGHAK, 39(4), 385, 2001
  12. Shigeyuki K, Hisashi T, Hajime Y, Yoshio Y, Noriko Y, Minoru S, "Synthesis of Activated Carbon from Organometallics/Coal Composites," The 23th Conference on Carbon Materials, Dec., Chiba, Japan, 1996
  13. Hisashi T, Shigeyuki K, Hisashi T, Makiko I, Hajime Y, Takayoshi K, Juji M, "Synthesis of Mesoporous ACF and Their Adsorption," The 23th Conference on Carbon Materials, Dec., Chiba, Japan, 1996
  14. Cho TH, "Spinning of Silver-Containing Reformed Pitch," Master Dissertation, Chungnam National Univ., Daejeon, Korea, 2000
  15. International Center for Diffraction Data, 1982 Power Diffraction File, New York, 844, 1982
  16. Chi W, Shen Z, "Mechanism and Kinetics of Air Stabilization of Petroleum Pitch Fibers," European Carbon Conference (Carbon '96), Newcastle upon Tyne, U.K., 395, 1996
  17. Fitzer E, Frohs W, Heins M, Carbon, 24(4), 387, 1986
  18. Lu Y, Zhu ZP, Liu ZY, New Carbon Mater., 19(1), 1, 2004
  19. Kum DH, Kim KH, Lee HJ, Transmission Electronic Microscopy Analysis, 1st Edi., Chung Mun Gak Press Inc., Seoul, 1996
  20. Lee DW, Lee JK, Rhee BS, Ryu SK, HWAHAK KONGHAK, 27(6), 777, 1989