Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.37, No.6, 828-833, 1999
회분식 반응기에서 폐윤활유 열분해 반응 특성
The Pyrolysis of Waste Lubricating Oil in a Batch Reactor
본 연구에서는 열중량분석법을 이용하여 1기압과 2기압에서 승온속도를 0.5, 1.0 및 2.0℃/min로 변화시키면서 폐윤활유의 열분해반응 속도 실험을 수행하였다. 전환율이 1%에서부터 100%일 때까지의 활성화에너지 및 반응차수를 구하였으며 반응기 급격하게 진행되는 구간에서 활성화에너지는 1기압일 대 점진적으로 증가하였고 2기압에서는 거의 변화가 없었다. 회분식 반응기에서 반응압력이 1기압과 2기압일 때 반응온도를 400-460℃로 변화시키면서 2시간동안 열분해반응 실험을 수행한 결과 반응온도가 증가할수록 생성된 열분해 오일의 양은 증가하지만 탄수소가 낮은 탄화수소화합물의 양은 감소하였다. 회분식반응기에서 폐윤활유의 최적 열분해 반응조건은 440℃, 1기압이였다.
Kinetic tests on pyrolysis of waste lubricating oil were carried out with thermo gravimetric technique at the heating rates of 0.5, 1.0, 2,0℃/min and pressure of 1 and 2 atm. The activation energy and the reaction order were determined at conversions of 1 to 100%. The activation energies were increased slowly at 1 atm, but took a constant value until a given degree of conversion at 2 atm. Waste lubrication oil was thermally cracked in semi-batch reactor of 400-460℃ at 1 and 2 atm for 2 hours. As the reaction temperature increased, the yields of products oils increased, but the product of light hydrocarbon oils decreased. The optimum temperature of pyrolysis of waste lubricating oil was 440℃ at 1 atm.
[References]
  1. Korea Lubricating Oil Industries Association Bulletin, 87(6), 32, 1998
  2. Reynolds JW, Whisman ML, Thompson CJ, Hydrocarb. Process., 56(9), 128, 1977
  3. Cotton FO, Whisman ML, Goetzinger JW, Reynolds JW, Hydrocarb. Process., 56(9), 131, 1977
  4. Linnard RE, Henton LM, Hydrocarb. Process., 58(9), 148, 1979
  5. Sequenira A, Sherman PB, Douciere JU, McBride EO, Hydrocarb. Process., 58(9), 155, 1979
  6. Bae JH, Chem. Ind. Technol., 12(1), 30, 1994
  7. Kim MS, Hwang JS, Kim HR, J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng., 32(4), 1015, 1997
  8. Hwang JS, Kim HR, Kim MS, Proceeding of the Fourth Japan-Korea Symposium on Separation Technology, 2, 681, 1996
  9. Bae JH, Min HH, Kwon SD, Chem. Ind. Technol., 16(1), 30, 1998
  10. Liebeskind JE, Chemtech, Sep., 537, 1973
  11. Mcintyre AD, Papic MM, Can. J. Chem. Eng., 52(April), 263, 1974
  12. Bouvier JM, Gelus M, Resources Conservation, 12, 77, 1986
  13. ASTM D 2887, "Standard Test Method for Boiling Range Distribution of Petroleum Fractions by Gas Chromatography,"
  14. Liebman SA, Levy EJ, "Pyrolysis and GC in Polymer Analysis," Marcel Dekker, Inc., 191, 1984
  15. Friedman HL, J. Polym. Sci. C: Polym. Lett., 6, 183, 1963
  16. Liou TH, Chang FW, Lo JJ, Ind. Eng. Chem. Res., 36(3), 568, 1997
  17. Ozawa T, Bull. Chem. Soc. Jpn., 38, 1881, 1965
  18. Freeman ES, Carroll B, J. Phys. Chem., 62, 394, 1958