Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.42, No.2, 235-240, 2004
기/액 향류흐름 유동층에서 기포특성의 축방향 변화 및 분포
Axial Variation and Distribution of Bubble Properties in Gas/Liquid Countercurrent Fluidized Beds
밀도가 낮은 입자를 유동 입자로 사용하고 직경이 0.152 m, 높이가 2.5 m인 기체-액체 향류 흐름 유동층에서 기포의 축방향 분산 및 분포 특성에 대하여 고찰하였다. 유동층에서 상승하는 기포의 크기, 상승속도와 빈도수 등을 이중 전기 저항 탐침법을 이용하여 측정하였다. 기포의 축방향 분산과 분포 특성은 각 특성들의 확률밀도함수에 의해 효과적으로 나타낼 수 있었으며, 기포 특성의 평균값을 확률 밀도함수로부터 결정하였다. 기포 크기의 평균값과 분포는 기체와 액체 유속뿐만 아니라, 분산판으로부터 축방향 높이의 증가에 따라 현저히 증가하였다. 기포의 상승 속도와 분포 또한 기체와 액체 유속뿐만 아니라 축방향 높이의 증가에 따라 매우 증가하는 경향을 나타내었다. 그러나 상승하는 기포의 빈도수는 축방향 높이가 증가함에 따라 감소하였다. 기포의 크기, 상승 속도와 빈도수 같은 기포 특성들은 본 실험의 운전 변수들인 축방향 위치, 기체와 액체의 유속과 입자의 밀도 등의 상관식으로 나타낼 수 있었다.
Axial variation and distribution of bubble properties were investigated in a gas/liquid countercurrent fluidized beds (0.152 m×2.5 m) with relatively low-density particles. Chord length, rising velocity and frequency of rising bubbles in the beds were measured and determined by means of dual resistivity probe method. The axial variation and distribution of bubble properties were well visualized by probability number density function, by which the mean value of bubble properties were determined. The mean value and distribution of bubble chord length increased profoundly with increasing axial height above the distributor as well as gas and liquid velocities. The rising velocity and its distribution of bubble also increased consider ably with increasing the axial height as well as gas and liquid velocities. But, the frequency of rising bubbles decreased with increasing the axial height. The bubble properties such as bubble chord length, rising velocity and frequency were well correlated in terms of the axial position, gas and liquid velocities, and particle density within this experimental conditions.
[References]
  1. Park HY, Kim SW, Cho YJ, Kang Y, Kim SD, HWAHAK KONGHAK, 39(5), 619, 2001
  2. Cho YJ, Park HY, Kim SW, Kang Y, Kim SD, Ind. Eng. Chem. Res., 41(8), 2058, 2002
  3. Ibrahim YA, Briens CL, Margaritis A, Bergongnou MA, AIChE J., 42(7), 1889, 1996
  4. Legile P, Menard G, Laurent C, Thomas D, Bernis A, Int. Chem. Eng., 32, 41, 1992
  5. Garcia-Calderon D, Buffiere P, Moletta R, Elmaleh S, Water Res., 32, 3593, 1998
  6. Kim SD, Kang Y, Chem. Eng. Sci., 52(21-22), 3639, 1997
  7. Tang WT, Fan LS, Ind. Eng. Chem. Res., 29, 128, 1990
  8. Chern SH, Muroyama K, Fan LS, Chem. Eng. Sci., 38, 1167, 1983
  9. Choi HS, Shin MS, Korean J. Chem. Eng., 16(5), 670, 1999
  10. Buffiere P, Moletta R, Chem. Eng. Sci., 54(9), 1233, 1999
  11. Nikolov V, Farag I, Nikov I, Bioprocess Eng., 23, 427, 2000
  12. Lee DH, Epstein N, Grace JR, Korean J. Chem. Eng., 17(6), 684, 2000
  13. Karamanev DG, Nikolov LN, AIChE J., 38, 1916, 1992
  14. Kang Y, Cho YJ, Woo KJ, Kim KI, Kim SD, Chem. Eng. Sci., 55(2), 411, 2000
  15. Cho YJ, Kim SJ, Nam SH, Kang Y, Kim SD, Chem. Eng. Sci., 56(21-22), 6107, 2001
  16. Deckwer WD, Nguyen-Tien K, Schumpe A, Serpemen Y, Biotechnol. Bioeng., 26, 461, 1982
  17. Kim SW, Kim HT, Song PS, Kang Y, Kim SD, Can. J. Chem. Eng., 81, 621, 2003