Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.42, No.2, 213-216, 2004
초임계유체에 용해된 염료의 폴리에스터 섬유에 대한 염착
Dye Uptake of Polyester Fiber in Supercritical Fluids
반유통형의 초임계유체 염색장치를 사용하여 333.2 K, 373.2 K, 413.2 K의 일정온도와 150 bar-300 bar의 압력에서 이산화탄소에 분산염료를 용해하여 폴리에스터 직물을 염색하고 염색시간에 따른 염착량을 측정하였다. 같은 방법으로 HFC-134a를 사용하여 383.2 K와 413.2 K의 일정온도와 50 bar-160 bar의 압력에서 염료를 용해하여 염색을 실시하고 염색시간에 대한 염착량을 측정하였다. 염착량에 대한 초임계유체의 온도와 압력의 영향이 검토되었다.이산화탄소와 HFC-134a의 초임계 용매를 비교하기 위하여 두 용매에 대한 염료의 용해도와 평형염착량의 관계를 검토하였다. 동일한 온도에서 HFC-134a를 초임계유체로 사용할 때보다 이산화탄소를 사용하는 것이 큰 평형염착량을 나타내었다. HFC-134a에 대한 염료의 용해도는 이산화탄소보다 훨씬 크지만 직물을 염색하는 초임계용매는 이산화탄소가 더 유리하였다.
The uptake of disperse dye into polyester fiber in supercritical carbon dioxide was measured in the pressure range between 150 bar and 300 bar at each temperature of 333.3 K, 373.2 K and 413.2 K, and the uptake in supercritical HFC-134a was measured in the pressure range between 50 bar and 160 bar at each temperature of 383.2 K, 413.2 K, using a flow-type apparatus with a cylindrical dyeing vessel. The effect of dye uptake in supercritical fluids on temperature and pressure was investigated. The dye uptake at constant pressure was much increased with temperature than it did with the pressure at constant temperature. The equilibrium uptakes of disperse dye in the supercritical carbon dioxide were compared with those in the supercritical HFC-134a. The equilibrium uptakes in the supercritical carbon dioxide were much great than those in the HFC-134a at the same temperature. The supercritical carbon dioxide is better supercritical media than the HFC-134a, even though dye in the supercritical HFC-134a is much solved than in the supercritical carbon dioxide.
[References]
  1. Saus W, Knittel D, Schollmeyer E, Text. Res. J., 63, 135, 1993
  2. Gebert B, Saus W, Knittel D, Buschmann HJ, Schollmeyer E, Text. Res. J., 64, 371, 1994
  3. Knittel D, Schollmeyer E, Melliand Textilber, 76, 1092, 1995
  4. Bach E, Cleve E, Schollmeyer E, vonRohr R, Trepp C, High Pressure Chemical Engineering, Elsevier, Amsterdam, 581, 1996
  5. Bach E, Cleve E, Schollmeyer E, Melliand International, 2, 165, 1999
  6. Bach E, Cleve E, Schollmeyer E, Melliand International, 3, 192, 1998
  7. Chang KH, Bae HK, Shim JJ, Korean J. Chem. Eng., 13(3), 310, 1996
  8. Bae HK, Her BK, HWAHAK KONGHAK, 34(3), 379, 1996
  9. Park MW, Bae HK, HWAHAK KONGHAK, 40(6), 715, 2002
  10. Lee JW, Min JM, Bae HK, J. Chem. Eng. Data, 44(4), 684, 1999
  11. Lee JW, Park MW, Bae HK, Fluid Phase Equilib., 179, 387, 2001
  12. Kramer A, Thodos G, Ind. Eng. Chem. Res., 27, 1506, 1988
  13. Iwai Y, Koga Y, Fukuda T, Arai J, J. Chem. Eng. Jpn., 25(6), 757, 1992