Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.42, No.2, 188-195, 2004
초임계 이산화탄소를 이용하여 괴상 중합된 폴리스티렌 용액으로부터 모노머 및 올리고머의 추출에 관한 연구
Monomer and Oligomer Extraction from Bulk Polymerized Polystyrene Solution using Supercritical Carbon Dioxide
괴상중합된 폴리스티렌 용액으로부터 초임계 이산화탄소를 이용하여 모노머 및 올리고머를 추출해내는 실험을 수행하였다. 추출 조건은 압력 13.7, 20.5, 27.3 MPa, 온도 303.15, 313.15, 323.15 K에서 실험을 수행하였다. 실험장치로는 연속식 추출 장치를 사용하였다. 200.0 L의 이산화탄소를 이용하여 90g의 폴리스티렌 용액에 대한 추출 실험을 수행한 결과 온도와 압력에 따라 모노머 및 저분자량 올리고머의 함량이 6-25%정도 감소하였다. 일정한 온도에서는 압력이 높아짐에 따라 추출된 모노머 및 올리고머의 양이 증가하고 잔류상 및 추출상의 고분자 분자량도 증가되는 경향을 확인할 수 있었다. 일정한 압력에서는 온도가 높아짐에 따라 역시 모노머의 추출량은 증가되었으나 올리고머의 추출량은 감소되는 경향이 있었으며 잔류상 및 추출상의 고분자 평균 분자량은 감소되는 경향이 있음을 확인할 수 있었다. 이산화탄소에 대한 폴리스티렌의 용해도가 매우 낮아 상대적으로 저분자량의 올리고머 및 모노머에 대한 선택도가 뛰어난 특성으로 인해 추출후 잔류상에 존재하는 고분자의 다분산지수는 5%정도 감소되는 결과를 얻었다.
Supercritical carbon dioxide was used to extract styrene monomer and ologomer from bulk polymerized polystyrene solution. Extraction was performed with different pressure(13.7, 20.5, 27.3 MPa) and temperature(303.15, 313.15, 323.15 K). A continuous extraction apparatus was used for this study. After 200.0L carbon dioxide per 90g polystyrene solution was consumed for extraction, the monomer and oligomer contents in the bulk polymerized solution were decreased by 6-25 wt%. As the pressure increased at fixed temperature, the amount of extracted oligomer and styrene monomer were increased and average molecular weight of polystyrene in residue and extract was increased. As the temperature increased at fixed pressure, the amount of extracted monomer was increase, however, oligomer content and average molecular weight of polystyrene in residue and extract were decreased. Due to low solubility of polystyrene in supercritical carbon dioxide, polydispersity index of residue was decreased by 5% after extraction.
[References]
  1. Brignole EA, Fluid Phase Equilib., 29, 133, 1986
  2. McHugh MA, Krukonis VJ, Supercritical Fluid Extraction, 2nd Ed., Butterworth Heinemann, 1994
  3. Klukonis V, Polym. News, 11, 7, 1985
  4. Jentoft RE, Gouw TH, J. Polym. Sci. B: Polym. Phys., 7, 811, 1969
  5. Jeon C, Jin T, Ahn S, Polym. Sci. Technol., 3(5), 392, 1992
  6. Odian G, Principles of Polymerization, 3rd Ed., John Wiley & Sons, Inc., 1991
  7. Kevin MS, O'Connor KM, Carl S, J. Appl. Polym. Sci., 33(8), 2925, 1987
  8. Scholsky KM, Morgan LW, J. Polym. Sci. C: Polym. Lett., 26(4), 181, 1988
  9. Watkins JJ, Krukonis VJ, Condo PD, Pradhan D, Ehrlich P, J. Supercrit. Fluids, 4(1), 24, 1991
  10. Kumar SK, Suter UW, Reid RC, Macromolecules, 20(10), 2550, 1987
  11. Kumar SK, Suter UW, Reid RC, Fluid Phase Equilib., 29, 373, 1986