Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.42, No.1, 102-106, 2004
양극산화된 탄소섬유/에폭시 복합재료의 크랙저항 특성
Crack Resistance Properties of Anodized Carbon Fibers/Epoxy Matrix Composites
본 실험에서는, 양극산화 처리된 탄소섬유의 표면 변화가 탄소섬유 강화 에폭시 복합재료의 크랙저항 특성에 미치는 영향에 대하여 고찰하였다. 탄소섬유의 표면처리 전후 표면특성 변화는 산-염기도, FT-IR, XPS 그리고 접촉각 측정을 통하여 알아보았고, 복합재료의 크랙저항 특성은 임계에너지 방출 속도 I(critical energy release rate, GIC)와 임계에너지 방출 속도 II(critical energy release rate mode II, GIIC)의 두 가지 방법을 통하여 고찰하였다. 실험결과, 탄소섬유 표면의 표면 산도와 O1S/C1S 비율이 증가하였는데, 이는 탄소섬유의 산성관능기와 표면자유에너지의 극성요소 증가에 기인하는 것으로 판단된다. 복합재료의 GIC그리고 GIIC같은 기계적 계면성질은 탄소섬유의 양극산화로 향상되어졌는데, 이는 산성관능기들의 증가에 따른 탄소섬유와 매트릭스와의 계면 결합력의 증가에 기인하는 것으로 판단된다.
Anodic oxidation on the surfaces of carbon fibers was carried out to enhance the mechanical interfacial properties of carbon fibers-reinforced epoxy matrix composites. And the surface characteristics of untreated and treated carbon fibers were studied by FT-IR, XPS, and contact angle measurements after modifications. Crack resistance of the composites was investigated using by two types of testing method, namely critical energy release rate mode I(GIC) and mode II(GIIC). The O1S /C1S ratio of the carbon fibers was increased after anodic treatment, due to the introductions of the oxygen-containing functional groups, or the specific components of surface free energy of the carbon fibers. It was found that the mechanical properties at interfaces, including GIC and GIIC of the composites had been improved by the oxidation, which could probably be attributed to the increase of the degree of adhesion at interfaces between fibers and resin matrix in the composite system.
[References]
  1. Schwartz MM, "Composite Materials Handbook," 2nd ed., McGraw-Hill, New York, 1992
  2. Smith WS, "Engineered Materials Handbook," ASM International, Ohio, 1987
  3. Donnet JB, Bansal RC, "Carbon Fibers," 2th ed., Marcel Dekker, New York, 1990
  4. Fitzer E, "Carbon Fibers and Their Composites," Springer-Verlag, New York, 1985
  5. Bauer RS, "Epoxy Resin Chemistry," ACS Advances in Chemistry Series No. 114, American Chemical Society, Washington DC, 1979
  6. Park SJ, "Interfacial Forces and Fields: Theory and Applications," ed. by J.P. Hsu, chap. 9, Marcel Dekker, New York, 1999
  7. Park SJ, Donnet JB, J. Colloid Interface Sci., 206(1), 29, 1998
  8. Breiner JM, Mark JE, Beaucage G, J. Polym. Sci. B: Polym. Phys., 37(13), 1421, 1999
  9. Charrier JM, "Polymeric Materials and Processing," Hanser, New York, 1990
  10. Boehm HP, Adv. Catal., 16, 179, 1966
  11. Lee H, Nevile K, "Handbook of Epoxy Resins," McGraw-Hill, New York, 1967
  12. Park SJ, Lee JR, J. Mater. Sci., 33(3), 647, 1998
  13. Park SJ, Jang YS, J. Colloid Interface Sci., 237(1), 91, 2001
  14. VanOss CJ, "Interface Forces in Aqueous Media," Marcel Dekker, New York, 1994
  15. Gardner SDC, Singamsetty SK, Booth GL, He GR, Pittman CU, Carbon, 33, 587, 1995
  16. Shannon MDG, Bubsey JLJ, Raymond T, Int. J. Fracture, 16, 137, 1980
  17. Griffith AA, Phil. Trans. R. Soc. London A, 221, 163, 1920
  18. Russell AJ, Street KN, "Factors Affecting the Interlaminar Facture Energy of Graphite/Epoxy Laminates," Proceedings of the Fourth International Conference on Composites Materials (ICCM-IV), Tokyo, Japan, 1982
  19. Compston PB, Jar PY, Burchill PJ, Takahasi K, Compos. Sci. Technol., 61, 321, 2001
  20. Dilsiz N, Ebert E, Weisweiler W, Akovali G, J. Colloid Interface Sci., 170(1), 241, 1995