Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.42, No.1, 26-32, 2004
금속 이온의 침전이 동반되는 연속식 화학-전해 조합 탈질 공정 특성 (II)
Characteristics of a Continuous Denitration Process Combining Chemical and Electrolytic Systems with Accompanying the Precipitation of Metal ions
본 논문에서는 금속이온의 침전이 동반되는 연속식 개미산 탈질-잔여 산 전해 분해 조합 공정에서의 질산 분해 특성 및 금속이온의 침전 특성이 연구되었다. 개미산 탈질-잔여 산 전해 분해 조합 공정은 초기 질산 2.0 M의 용액을 연속적으로 0.1 M이하까지 효과적으로 조절할 수 있었다. 본 연구에서 고려된 Zr, Mo, Nd, Fe 등은 개미산에 의한 탈질 후 잔여 산의 전해 분해 과정에서 전극에 영향을 주지 않았으며, 질산 용액 중의 Mo 이온은 전해 반응과정에서 아질산 생성을 촉진시켰다. 연속식 개미산 탈질 반응기에 공급되는 개미산/질산의 몰 비는 최종 산도, 침전율 및 침전물의 형태에 큰 영향을 주어 그 비율이 1.65일 때 잔여 산의 전해 분해 후의 최종 산도가 0.1 M 정도로 가장 낮게 나타났으며, 그 때 Zr, Mo의 침전율은 가장 높은 값으로 각각 95%, 83%까지 도달하였다. 침전물의 형태는 반응기에 공급되는 개미산/질산의 비율에 큰 영향을 받아 개미산/질산의 몰 비 1.5-1.7 사이에서만 침상 형태를 가졌으며 그 이외의 영역에서는 구상의 형태를 가졌다.
This work has studied the characteristics of destruction of nitric acid and precipitation of several metal ions in a continuous denitration process combining a denitration by formic acid and a residual acid-electrolytic trimming system. The process could treat continuously and effectively a feeding nitric acid of 2.0 M to below about 0.1 M. The metal ions of Zr, Mo, Fe, and Nd did not affect the electrodes at the step of electrolytic trimming of the residual acid after denitration by formic acid. The Mo ion in electrolytic solution enhanced the generation of nitrite ion during the electrolytic reaction. The mole ratio of formic acid to nitric acid fed into the continuous denitration reactor using formic acid affected much the final acidity, the precipitation yields of metal ions, the precipitate morphology. At the ratio of 1.65, the process had the lowest final acidity of less than 0.1 M, and the precipitation yields of Zr and Mo reached 95% and 83%, respectively as the highest values. Only the precipitate generated in the mole ratio of formic acid to nitric acid between 1.5 and 1.7 had a needle-shaped morphology, otherwise it was granular-shaped.
[References]
  1. OECD Final Report, "Status and Assessment Report on Actinide and Fission Product Partitioning and and Transmutation," Report NEA/PTS/DOC(98)4, 1998
  2. Lelievre D, Boussier H, Grouiller JP, Bush RP, "Perspectives and Cost of Partitioning and Transmutation of Long-Lived Radionuclides," Report EUR-17485, 1996
  3. Kondo Y, Kubota M, J. Nucl. Sci. Technol., 29(2), 140, 1992
  4. Yoo JH, Lee EH, "Development of Long-Lived Radionuclide Partitioning Technology," Report KAERI/RR-1632/95, 1996
  5. Lee EH, Whang DS, Kim KW, Kwon SG, Yoo JH, J. Korean Ind. Eng. Chem., 8(1), 132, 1997
  6. Lee EH, Hwang DS, Kim KW, Shin YJ, Yoo JH, J. Korean Ind. Eng. Chem., 6(5), 882, 1995
  7. Lee EH, Hwang DS, Kim KW, Shin YJ, Yoo JH, J. Korean Ind. Eng. Chem., 6(3), 404, 1995
  8. Orebaugh EG, "Denitration of Savannar River Plant Waste Streams," Report DP-1417, 1976
  9. Kim KW, Kim SH, Lee EH, Korean Chem. Eng. Res., 42(1), 20, 2004
  10. Kim KW, Kim SH, Lee EH, J. Radioanal. Nucl. Chem., in press, 260(1), 2004
  11. Kim KW, Lee EH, Kim JS, Shin KH, Kim KH, Electrochim. Acta, 46(6), 915, 2001
  12. Kim KW, Lee EH, Kim JS, Shin KH, Kim KH, J. Electrochem. Soc., 148(3), B111, 2001
  13. Kim KW, Lee EH, Kim JS, Shin KH, Jung BI, Kim KH, HWAHAK KONGHAK, 40(2), 146, 2002
  14. Kim KW, Lee EH, Kim JS, Shin KH, Jung BI, Electrochim. Acta, 47(15), 2525, 2002
  15. Kim KW, Lee EH, Choi IK, Yoo JH, Park HS, J. Radioanal. Nucl. Chem., 245(2), 301, 2000
  16. Kim KW, Lee EH, Choi IK, Yoo JH, Park HS, HWAHAK KONGHAK, 38(2), 149, 2000