Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.42, No.1, 10-19, 2004
BaTiO3 분말 합성에서 반응조건의 영향
Effects of Reaction Conditions on the Synthesis of BaTiO3 Powder
생성물 수율과 반응성을 고려하여 선정한 원료를 이용하여 수열합성법으로 BaTiO3미세 분말을 제조하였으며 합성시 반응 원료, 온도 및 시간 변화에 따른 영향을 조사하였다. Ba(NO3)2와 TiO2·xH2O를 원료로 합성할 경우 광화제 없이 BaTiO3제조가 불가능한 반면 Ba(OH)2·8H2O와 TiO2·xH2O를 출발물질로 사용할 경우는 광하제 없이도 80 ℃부터 BaTiO3가 합성되었다. BaTiO3의 합성은 반응혼합물의 pH가 높을수록 유리하였으며 전화율은 반응시간보다는 반응온도에 더 큰 영향을 받았다. 이상의 실험 결과로부터 BaTiO3 입자는 수열합성시 용액 중 OH-기의 친핵 공격에 의한 함수 티타니아의 용해와 Ba이온과의 탈수 반응을 통한 핵생성 및 성장 경로를 통해 합성된다고 제안하였다.
BaTiO3 fine powder was prepared by hydrothermal synthesis with various precursor materials selected in view of yield and reactivity. The effect of reaction temperature, time and raw material was investigated in the above process. While Ba(NO3)2 and TiO2·xH2O were used as starting material, it was not possilbe to prepare BaTiO3 without mineralizer, however the same can be synthesized at 80 ℃ without mineralizer using Ba(OH)2·8H2O and TiO2·xH2O. The synthesis of BaTiO3 was favored by higher pH of the reaction solution and conversion was found dependent on the reaction temperature instead of time. Experimental data suggested that BaTiO3 seemed to be synthesized hydrothermally through reaction pathway that included dissolution of hydrous titania by nucleophilic attack of OH- group in aqueous medium, nucleation by dehydration between Ba ion and titanium complex dissolved and the growth of nuclei.
[References]
  1. Nowotny J, Electronic Ceramic Materials, Trans Tech Publication Ltd., Zurich, Switzerland, 1992
  2. Henning D, Mayr W, J. Solid State Chem., 26, 329, 1978
  3. Samuneva B, Jambazov S, Lepkova D, Dimitriev Y, Ceram. Int., 16, 355, 1990
  4. Teraoka Y, Kakebayashi H, Moriguchi I, Kagawa S, Chem. Lett., 673, 1991
  5. Oh JK, Seo KW, J. Korean Ind. Eng. Chem., 10(4), 509, 1999
  6. Oh JK, Seo KW, HWAHAK KONGHAK, 37(1), 72, 1999
  7. Kim KY, Kim YH, Son YB, J. Korean Ceram. Soc., 27(4), 493, 1989
  8. Lee KH, Lee BH, Kim DW, J. Korean Ceram. Soc., 26(3), 371, 1989
  9. Ovramenko NA, Shvets LI, Ovcharenko FD, Kornilovich BY, Izv. Akad. Nauk SSSR. Neorg. Mater., 15(11), 1982, 1979
  10. Hertl W, J. Am. Ceram. Soc., 71(10), 879, 1988
  11. Kutty TRN, Vivekanandan R, Murugaraj P, Mater. Chem. Phys., 19, 533, 1988
  12. Vivekanandan R, Philip S, Kutty TRN, Mater. Res. Bull., 22, 99, 1986
  13. Shi EW, Xia CT, Zhong WZ, Wang BG, Feng CD, J. Am. Ceram. Soc., 80(6), 1567, 1997
  14. Xia CT, Shi EW, Zhong WZ, Guo JK, J. Cryst. Growth, 166, 961, 1996
  15. Pechini MP, "Barium Titanate and Processes for Producing Same," U.S. Patent, No. 2,985,506, 1961
  16. Beck HP, Eiser W, Haberborn R, J. Eur. Ceram. Soc., 21, 687, 2001
  17. Hennings D, Rosenstein G, Schreinemacher H, J. Eur. Ceram. Soc., 8, 107, 1991
  18. Lencka MM, Riman RE, Chem. Mater., 5, 61, 1993
  19. Lide DR, Frederikse HPR, CRC Handbook of Chemistry and Physics, 75th ed., CRC Press, Boca Raton, FL, 1995
  20. Eckert JO, Hung-Houston CC, Gersten BL, Lencka MM, Riman RE, J. Am. Ceram. Soc., 79(11), 2929, 1996
  21. Blesa MA, Morando PJ, Regazzoni AE, Chemical Dissolution of Metal Oxides, CRC press, Baca Raton, FL, 1994