Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.42, No.1, 1-9, 2004
수소·연료전지 기술
Hydrogen & Fuel Cell Technology
수소에너지를 이용한 기술 중 연료전지 기술이 가장 효과적인 방법으로 인정되고 있다. 재래식 열연기관의 경우 일반적으로 33% 내지 35% 정도의 열효율로 전기를 얻을 수 있는데 반해 연료전지의 경우 전기생산 효율은 약 60%까지 올릴 수 있고 전체 에너지(전기와 열) 효율을 고려하면 85%까지도 생산이 가능한 상태이다. 더구나 연료전지의 경우 공해 배출이 거의 없다는 장점이 있다. 따라서 연료전지 기술은 21세기의 당면문제인 화석연료의 고갈과 환경오염 문제를 동시에 해결할 수 있는 대안으로 떠오르고 있다. 본 총설에서는 여러 가지 수소 제조 기술과 연료전지 기술 가운데 가장 실용화에 가깝고 실용화되면 배터리 대체, 소규모 주택용 및 건물용 전원, 자동차용 전원 등으로 사용할 수 있어서 경제 및 기술적인 파급효과가 큰 PEMFC와 DMFC에 대한 최근의 연구개발 경향을 정리하였다.
Among various technologies using hydrogen-energy, fuel cells have been considered as the most energy efficient technology. A conventional combustion-based power plant typically generates electricity at efficiencies of 33 to 35 percent, while fuel cell plants can generate electricity at efficiencies of up to 60 percent. When fuel cells are used to generate electricity and heat (co-generation), they can reach efficiencies of up to 85 percent. Moreover, fuel cells generate virtually zero pollution including greenhouse gases such as CO2. Therefore, the fuel cells are believed as a most promising alternative power producing technology, which can solve global problems facing 21st century such as exhaustion of fossil fuels and environmental pollution at the same time. In this review, recent trends in fuel cell R&D are summarized focusing on PEMFC and DMFC which are closest to the practical use and can be used for batteries, electrical power sources for automobiles and immobile structures such as buildings.
[References]
  1. US DOE, A National Vision of America's Transition to a Hydrogen Economy - To 2030 and Beyond, Feb., 2002
  2. Business Communication Corp. (BCC), Chem. Mark. Repp, April 8, FR3, 2003
  3. Kreuter W, Hofmann H, Int. J. Hydrog. Energy, 23(8), 661, 1998
  4. Schug CA, Int. J. Hydrog. Energy, 23(12), 1113, 1998
  5. Campillo B, Sebastian PJ, Gamboa SA, Albarran JL, Caballero LX, Mater. Sci. Eng., C19, 115, 2002
  6. Hoor FS, Aravinda CL, Ahmed MF, Mayanna SM, J. Power Sources, 103(1), 147, 2001
  7. Vermeiren P, Adriansens W, Moreels JP, Leysen R, Int. J. Hydrog. Energy, 23(5), 321, 1998
  8. Kleinke MU, Knobel M, Bonugli LO, Teschke O, Int. J. Hydrog. Energy, 22(8), 759, 1997
  9. Appleby AJ, Electrocatal. Mod. Aspects Electrochem., 9, 369, 1974
  10. Brooman EW, Kuhn AT, J. Electroanal. Chem., 49, 325, 1974
  11. Tilak BW, "Comprehensive Treaties of Electrochemistry," Vol. 5, Plenum, 1982
  12. Miles MH, J. Electroanal. Chem., 60, 89, 1975
  13. Commercial Brochures from Brown Boveri & Cie
  14. Commercial Brochures from Norsk Hydro Notodden Fabrikker
  15. Jensen FC, Schubert FH, "Hydrogen Energy," Part A, T.N. Vegiroglu, ed. Plenum Press, 425-439, 1975
  16. Murray JN, Laskin JB, Kincaide WC, Proceedings of the Symposium on Industrial Water Electrolysis, Princeton, 78-4, 39-53, 1978
  17. Murray JN, Laskin JB, Kincaide WC, Proceedings of the Symposium on Industrial Water Electrolysis, Princeton, 78-4, 117-127, 1978
  18. Braun MJ, Proceedings of the Symposium on Industrial Water Electrolysis, Princeton, 78-4, 16-23, 1978
  19. Christiansen K, Grundt T, Proceedings of the Symposium on Industrial Water Electrolysis, Princeton, 78-4, 24-38, 1978
  20. Wuellenweber H, Mueller J, Proceedings of the Symposium on Industrial Water Electrolysis, Princeton, 78-4, 1, 1978
  21. Giuffre L, Spaziant PM, Nidola A, Proceedings of the Symposium on Industrial Water Electrolysis, Princeton, 78-4, 190, 1978
  22. Blomen LJMJ, Mugerwa MN, "Fuel Cell Systems," Plenum Press, 1993
  23. NAFION Product Bulletin, DuPont Company
  24. "Solid Polymer Electrolyte Water Electrolysis Technology Development for Large Scale Hydrogen Production," General Electric Company, DOE report No. DOE/ET/26202-1, 1981
  25. Takenaka H, Torikai E, Kawami Y, Wakabayashi N, Int. J. Hydrog. Energy, 7(5), 397, 1982
  26. Funk JE, 10th World Hydrogen Energy Conference, Cocoa Beach, U.S.A., 1994
  27. Isenberg AP, Proceedings of the Symposium on Electrode Materials and Processes for Energy Conversion and Storage, Princeton, 77-6, 682, 1978
  28. Dutta S, Int. J. Hydrog. Energy, 15(6), 379, 1990
  29. Kobayashi T, Abe K, Ukyo Y, Matsumoto H, Solid State Ion., 138(3-4), 243, 2001
  30. Hartmut W, "Electrochemical Hydrogen Technologies," Elsevier, 1990
  31. Ioroi T, Yasuda K, Siroma Z, Fujiwara N, Miyazaki Y, J. Power Sources, 112(2), 583, 2002
  32. Ando Y, Tanaka T, Doi T, Takashima T, Energy Conv. Manag., 42(15-17), 1807, 2001
  33. Chen GY, Delafuente DA, Sarangapani S, Mallouk TE, Catal. Today, 67(4), 341, 2001
  34. Armor JN, Appl. Catal. A: Gen., 176(2), 159, 1999
  35. ICI Katalco Catalogue, 1999
  36. Kumar R, Agent O, "Summary Report on the IEA ANNEX XI PHASE II Workshop," 38, 2003
  37. Heinzel A, Vogel B, Hubner P, J. Power Sources, 105(2), 202, 2002
  38. Avci AK, Trimm DL, Onsan ZI, Chem. Eng. J., 90(1-2), 77, 2002
  39. Freni S, Calogero G, Cavallaro S, J. Power Sources, 87(1-2), 28, 2000
  40. http://www.plugpower.com
  41. http://www.nuvera.com
  42. http://www.matthey.com
  43. Dudfield CD, Chen R, Adcock PL, J. Power Sources, 85(2), 237, 2000
  44. Dudfield CD, Chen R, Adcock PL, J. Power Sources, 86(1-2), 214, 2000
  45. Draft of Hydrogen, Fuel Cells & Infrastructure Technologies Program, U.S. DOE, EERE, June, 3, 2003
  46. Manasilp A, Gulari E, Appl. Catal. B: Environ., 37(1), 17, 2002
  47. Echigo M, Tabata T, Appl. Catal. A: Gen., 251(1), 157, 2003
  48. Kahlich MJ, Gasteiger HA, Behm RJ, J. Catal., 182(2), 430, 1999
  49. Grot WG, Chem. Ind., 19, 647, 1985
  50. Costamagna P, Srinivasan S, J. Power Sources, 102(1-2), 242, 2001
  51. Wakizoe M, Velev OA, Srinivasan S, Electrochim. Acta, 40(3), 335, 1995
  52. Kato H, "An Ion Exchange Membrane and Electrode Assembly for an Electrochemical Cell," U.S. Patent, No. 6,054,230, 2000
  53. Savadogo O, J. New Mater. Electrochem. Syst., 1, 47, 1998
  54. Kopitzke RW, Linkous CA, Anderson HR, Nelson GL, J. Electrochem. Soc., 147(5), 1677, 2000
  55. Wainright JS, Wang JT, Weng D, Savinell RF, Litt M, J. Electrochem. Soc., 142(7), L121, 1995
  56. Kawahara M, Rikukawa M, Sanui K, Ogata N, Solid State Ion., 136-137, 1193, 2000
  57. Mukerjee S, Srinivasan S, J. Electroanal. Chem., 357, 201, 1993
  58. Swette LL, LaConti AB, McCatty SA, J. Power Sources, 47, 343, 1994
  59. Mukerjee S, Srinivasan S, Soriaga MP, Mcbreen J, J. Electrochem. Soc., 142(5), 1409, 1995
  60. Verbeek H, Sachtler W, J. Catal., 42, 257, 1976
  61. Wang SR, Fedkiw PS, J. Electrochem. Soc., 139, 3151, 1992
  62. Bittins-Cattaneo B, Iwasita T, J. Electroanal. Chem., 238, 151, 1987
  63. Watanabe M, Motoo S, J. Electroanal. Chem., 60, 267, 1975
  64. Miura H, Gonzales R, J. Phys. Chem., 86(9), 1577, 1982
  65. Alerasool S, S, Gonzales RD, J. Catal., 124, 204, 1990
  66. Franaszczuk K, Sobkowski J, J. Electroanal. Chem., 327, 235, 1992
  67. Grgur BN, Zhuang G, Markovic NM, Ross PN, J. Phys. Chem. B, 101(20), 3910, 1997
  68. Grgur BN, Markovic NM, Ross PN, J. Phys. Chem. B, 102(14), 2494, 1998
  69. Gottesfeld S, Pafford J, J. Electrochem. Soc., 135, 2651, 1988
  70. Wilkinson DP, "Method and Apparatus for Oxidizing Carbon Monoxide in the Reactant Stream of an Electrochemical Fuel Cell," U.S. Patent, No. 5,432,021, 1995
  71. Uribe A, Zawodzinski TA, Gottesfeld S, "Fuel Cell Anode Configuration for CO Tolerance," WO0036679, 1999
  72. Toda T, Igarashi H, Uchida H, Watanabe M, J. Electrochem. Soc., 146(10), 3750, 1999
  73. Paffet MT, Beery GJ, Gottesfeld S, J. Electrochem. Soc., 135, 1431, 1988
  74. Beard BC, Ross PN, J. Electrochem. Soc., 130, 221, 1990
  75. Raistrick ID, "Electrode Assembly for Use in a Solid Polymer Electrolyte Fuel Cell," U.S. Patent, No. 4,876,115, 1989
  76. Dhar HP, "Near Ambient, Unhumidified Soild Polymer Fuel Cell," U.S. Patent, No. 5,318,863, 1994
  77. Wood DL, Yi YS, Nguyen TV, Electrochim. Acta, 43(24), 3795, 1998
  78. Hentall PL, Lakeman JB, Mepsted GO, Adcock PL, Moore JM, J. Power Sources, 80(1-2), 235, 1999
  79. Hornung R, Kappelt G, J. Power Sources, 72(1), 20, 1998
  80. http://www.ballard.com/
  81. Smith MJ, "Hydrogen, Fuel Cells and Infrastructure Technologies Program," DOE 2002 Annual report, 267-268, 2002
  82. Hogarth M, Christensen P, Hamnett A, Shukla A, J. Power Sources, 69(1-2), 113, 1997
  83. Chun BC, Reddington E, Sapienza A, Yu JS, Mallouk TE, "Combinatorial Discovery ane Optimization of anode Electrocatalysts for Direct Methanol Fuel Cell," Fuel Cell Seminar, November 16-19, 1-4, 1998
  84. Sauk JH, Shul YG, Jung DH, Kim CS, Shin DR, Yang JC, HWAHAK KONGHAK, 37(1), 21, 1999
  85. Kosek J, Cropely C, Hamdan M, Shramko A, "Recent Advances in Direct Methanol Fuel Cell at Giner, Inc." Fuel Cell Seminar, November 16-19, 693-694, 1998
  86. Dolan G, "Methanol: The Consumer-Friendly Hydrogen Source," Fuel Cell Seminar, November 3-7, 676-679, 2003
  87. http://www.fuelcells.org/
  88. Cox P, Cha SY, Attia A, "PolyFuel's Z1 Membrane and Catalyst Coatings to Improve the Fuel Cell Performance in Portable Power Applications," Fuel Cell Seminar, November 3-7, 977-980, 2003
  89. Pavio J, "Performance and Design of a Reformed Hydrogen Fuel Cell Systems," Fuel Cell Seminar, November 3-7, 973-976, 2003
  90. "MTI Micro Teams Up with Harris, Gillette/Duracell," Fuel Cells Bulletin, Issue, 12, 6, 2003
  91. "Smart Fuel Cell Starts DMFC Series Production," Fuel Cells Bulletin, Issue 4, 4, 2002
  92. "NEC Unweils Fully Integrated Fuel Cell Notebook PC," Fuel Cells Bulletin, Issue 8, 1, 2003
  93. "Latest DMFC Prototypes From Toshiba, Hitach Focus on Catalyst," Fuel Cells Bulletin, Issue 12, 2, 2003
  94. Maruyama R, Electrochim. Acta, 48(1), 85, 2002