Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.37, No.4, 593-597, 1999
N-methyldiethanolamine 수용액과 이산화탄소간의 반응속도에 미치는 piperazine의 영향
Effect of Piperazine on the Reaction Rate Constant of Carbon Dioxide into Aqueous N-methyldiethanolamine Solutions
MDEA에 piperazine이 첨가된 흡수제를 젖은 구 흡수장치(wetted-sphere apparatus)를 사용하여 이산화탄소와의 흡수속도를 측정하고 온도의 영향 및 MDEA, piperazine 각각의 농도에 대한 영향을 살펴보았다. MDEA 수용액의 경우 아민의 농도가 증가함에 따라 겉보기 반응속도 상수가 증가하였으나 piperazine이 첨가된 MDEA 수용액은 MDEA 농도 증가에 따라 겉보기 반응속도 상수가 감소했다. 겉보기 반응속도 상수는 piperazine 농도 증가에 따라 증가하는 경향을 나타냈다. piperazine 첨가로 MDEA 수용액의 반응속도 활성 효과를 높이기 위해서는 MDEA에 농도 증가에 따라 piperazine의 첨가 농도를 증가시켜 주어야 한다. 겉보기 반응속도의 향상은 piperazine과 MDEA의 농도 비를 변화시킴으로써 원하는 값을 얻을 수 있다.
The kinetics of CO2 with aqueous MDEA(N-methyldiethanolamine) and piperazine added aqueous MDEA solutions were investigated. A wetted-sphere absorption apparatus was used to measure the absorption rate. The apparent reaction rate constant increases with increasing MDEA concentration without piperazine. But the apparent reaction rate constant decreases with increasing MDEA concentration with peperazine. The apparent reaction rate constant strongly increases with increasing piperazine concentration. The highly concentrated MDEA solution needs more piperazine to activate reaction rate. The activation of reaction rate depends on the mole ratio of piperazine and MDEA.
[References]
  1. Kohl AL, Riesenfeld FC, "Gas Purification," 4th ed., Gulf Publishing Co., Houston, TX, 1985
  2. Seo DJ, Hong WH, J. Chem. Eng. Data, 41(2), 258, 1996
  3. Barth D, Tondre C, Lappai G, Delupuech JJ, J. Phys. Chem., 85, 3660, 1981
  4. Blauwhoff PMM, Versteeg GF, Van Swaaij WP, Chem. Eng. Sci., 38, 1411, 1983
  5. Donaldson TL, Nguyen YN, Ind. Eng. Chem. Fundam., 19, 260, 1980
  6. Tomcej RA, Otto FD, AIChE J., 35, 861, 1989
  7. Appl M, Wagner U, Henrici HJ, Kuessner K, Voldamer K, Fuerst E, U.S. Patent, 4,336,233, 1982
  8. Xu GW, Zhang CF, Qin SJ, Wang YW, Ind. Eng. Chem. Res., 31, 921, 1992
  9. Versteeg GF, van Swaaij WPM, Chem. Eng. Sci., 43, 587, 1988
  10. Davidson JF, Cullen EJ, Trans. Instn. Chem. Eng., 35, 51, 1957
  11. Wild JD, Porter DE, Ind. Eng. Chem. Eng. Symp. Ser., 28, 30, 1968
  12. Al-Ghawas HA, Hagewiesche DP, Ruiz-Ibanez G, Sandall OC, J. Chem. Eng. Data, 34, 385, 1989
  13. Rinker EB, Ashour SS, Sandall OC, Chem. Eng. Sci., 50(5), 755, 1995
  14. Park SW, Park PW, Kim SS, Yun JW, HWAHAK KONGHAK, 25(5), 447, 1987
  15. Lee KR, Hwang ST, Korean J. Chem. Eng., 6(3), 259, 1989
  16. Yu WC, Astarita G, Savage DW, Chem. Eng. Sci., 40, 1585, 1985
  17. Haimour N, Bidarian A, Sandall O, Chem. Eng. Sci., 42, 1393, 1987
  18. Pani F, Gaunand A, Cadours R, Bouallou C, Richon D, J. Chem. Eng. Data, 42(2), 353, 1997