Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.37, No.4, 568-574, 1999
이산화탄소-Hexanoic Acid와 이산화탄소-Octanoic Acid 이성분계의 고압 상거동
High Pressure Phase Behavior of Carbon Dioxide-Hexanoic Acid and Carbon Dioxide-Octanoic Acid Binary Systems
고압하에서 이산화탄소-hexanoic acid와 이산화탄소-octanoic acid계의 이성분게에 대한 상거동데이터를 얻기 위해 실험을 수행하였다. 등온에서 이산화탄소-hexanoic acid와 이산화탄소-octanoic acid계의 압력-조성관계를 온도 35, 55, 75 그리고 100℃에서 실험하였으며, 이때 압력은 23-240bar범위이다. 두 계에 대해 동일한 압력에서 hexanoic acid와 octanoic acid의 용해도는 온도가 증가할수록 증가함을 알 수 있었으며, 또한 두 계에 대한 혼합물 임계압력과 조성에 대하여 나타내었다. 본 연구에서 실험한 결과를 statistical associating fluid theory(SAFT) 상태식으로 모델링하였으며 SAFT 상태식은 온도에 독립인 파라미터 두 개를 포함하고 있다. 본 모델에 대한 계산치와 실험치를 비교하여 나타내었다. 그 결과 실험치와 계산치는 좋은 일치를 보였다.
The binary carbon dioxide-hexanoic acid and carbon dioxide-octanoic acid systems were studied to obtain phase behavior data under high pressure. Pressure-composition isotherms are obtained for the carbon dioxide-hexanoic acid and carbon dioxide-octanoic acid systems at temperatures of 35,55,75 and 100℃ and for pressure range from 23 to 240 bar. The critical properties of carbon dioxide-hexanoic acid and carbon dioxide-octanoic acid systems are determined to near to critical point of pure carbon idoxide. These carbon dioxide-polar acid binary systems have continuous critical mixture curves that exhibit maximums in pressure at temperatures between the critical temperatures of carbon dioxide and hexanoic acid or octanoic acid. The experimental data obtained in this study are modeled using the statistical associating fluid theory(SAFT) equation of state. The experimental data are good correlated by using SAFT equation of state with two adjustable parameters for the carbon dioxide-hexanoic acid and carbon dioxide-octanoic acid systems.
[References]
  1. Hannay JB, Horgarth J, Proc. Royal Soc., London, 30, 484, 1879
  2. Zozel K, Angew. Chem.-Int. Edit., 17, 702, 1978
  3. Chemical Engineering, McGraw-Hill, 25, Feb., 1990
  4. Byun HS, Hasch BM, McHugh MA, Fluid Phase Equilib., 115(1-2), 179, 1996
  5. Byun HS, Kim YS, Im JK, J. Korean Ind. Eng. Chem., 9(6), 924, 1998
  6. Dean JA, "Lange's Handbook of Chemistry," 13th ed, McGraw-Hill, New York, NY, 1985
  7. Vargaftik NB, "Handbook of Physical Properties of Liquid and Gases," Springer-Verlag, Berlin, 1983
  8. Reid RC, Prausnitz JM, Poling BE, "The Properties of Gases & Liquids," 4th ed., McGraw-Hill, New York, NY, 1987
  9. Huang SH, Radosz M, Ind. Eng. Chem. Res., 29, 2284, 1990
  10. Huang SH, Radosz M, Ind. Eng. Chem. Res., 30, 1994, 1991
  11. Wertheim MS, J. Stat. Phys., 35, 19, 1984
  12. Wertheim MS, J. Stat. Phys., 35, 35, 1984
  13. Wertheim MS, J. Stat. Phys., 42, 459, 1986
  14. Wertheim MS, J. Stat. Phys., 42, 477, 1986
  15. Sanchez IC, Lacombe RH, Macromolecules, 11, 1145, 1978
  16. Vinalehand P, Donohue MD, J. Phys. Chem., 93, 4355, 1989
  17. Panayiotou CG, Sanchez IC, Macromolecules, 24, 6231, 1991
  18. Carnahan NF, Starling KE, J. Chem. Phys., 51, 635, 1969
  19. Chapman WG, Gubbins KE, Joslin CG, Gray CG, Pure Appl. Chem., 59, 53, 1987
  20. Chapman WG, Jackson G, Gubbins KE, Mol. Phys., 5, 1057, 1988
  21. Chapman WG, Gubbins KE, Jackson G, Radosz M, Ind. Eng. Chem. Res., 29, 1709, 1990
  22. Alder BJ, Young DA, Mark MA, J. Chem. Phys., 56, 3013, 1972
  23. Beret S, Prausnitz JM, AIChE J., 21, 1123, 1975
  24. McHugh MA, Krukonis VJ, "Supercritical Fluid Extraction: Principles and Practice," 2nd ed., Butterworth, Stoneham, MA, 1993