Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.37, No.3, 472-481, 1999
기체유동층에서 최소슬러깅속도
Minimum Slugging Velocity in a Gas Fluidized Beds
기체유동층(직경 0.1 m, 높이 2.5m)에서 층물질로 모래(평균입경:0.286mm, 입자밀도:2,561kg1m3)를 사용하여 분산판으로부터의 높이(0.36, 0.46, 0.83, 0.93m)와 최소유동화상태의 층높이(0.85, 0.95, 1.05, 1.15, 1.25m) 변화에 따른 최소 슬러깅속도의 변화를 측정 및 고찰하였다. 최소슬러깅속도는 분산판으로부터의 높이가 증가함에 따라 감소하였으며 최소 유동화상태의 층높이가 증가함에 따라 증가하였다. 기포크기에 관한 기존의 상관식을 이용하여 최소슬러깅속도에 관한 모델을 제시하였다. 본 연구에서 제시된 최소슬러깅속도에 관한 모델은 본 연구 및 문헌의 실험결과들과 만족스러운 일치를 보였으며 장치직경, 입자특성 및 분산판으로부터의 높이변화에 따른 최소슬러깅속도의 변화경향을 예측할 수 있었다.
Effects of height from the distributor plate and bed height at minimum fluidization on the minimum slugging velocity have been investigated in a gas fluidized bed(0.1 m i.d. and 2.5 m height) using sand(mean diameter : 0.286 mm, apparent density : 2,561 kg/m3) as bed material. Minimum slugging velocity decreased with increasing height from the distributor plate, however, increased with increasing bed height at minimum fluidization. A model has been proposed to predict the minimum slugging velocity based on bubble size correlation. The proposed model can predict the present and previous experimental results reasonably well.
[References]
  1. Davidson JF, Clift R, Harrison D, "Fluidization," Chapter 3, 2nd ed., Academic Press, London, 122, 1985
  2. Stewart PSB, Davidson JF, Powder Technol., 1, 61, 1967
  3. Baeyens J, Geldart D, Chem. Eng. Sci., 29, 255, 1974
  4. Broadhurst TE, Becker HA, AIChE J., 21(2), 238, 1975
  5. Ho TH, Yutani N, Fan LT, Walawender WP, Powder Technol., 35, 249, 1983
  6. Agarwal PK, 2nd Int. Symp. on Gas-Solid Flows, Atlanta, May 12-16, 1, 1986
  7. De Luca L, Di Felice R, Foscolo PU, Powder Technol., 69, 171, 1992
  8. Matheson GL, Herbst WA, Holt PH, Ind. Eng. Chem., 41, 1099, 1949
  9. Dimattia DG, Amyotte PR, Hamdullahpur F, Can. J. Chem. Eng., 75(2), 452, 1997
  10. Gerald D, Chem. Eng. Prog., 47, 483, 1951
  11. Leva M, Weintraub M, Grummer M, Pollchik M, Storch HH, U.S. Bureau of Mines Mulletin, 504, 1951
  12. Lanneau KP, Trans. Instn. Chem. Eng., 38, 125, 1960
  13. Fatah N, Flamant G, "Fluidization and Fluid Particle Systems," Casal, J. and Arnaldos, J. eds., Universitat Politecnica de Cataluya, Spain, 103, 1990
  14. Ergun S, Chem. Eng. Prog., 48, 89, 1952
  15. Lee GS, Kim SD, Powder Technol., 62, 207, 1990
  16. Wen CY, Yu YH, AIChE J., 12, 610, 1966
  17. Cranfield RR, Geldart D, Chem. Eng. Sci., 29, 935, 1974
  18. Choi JH, Son JE, Kim SD, Ind. Eng. Chem. Res., 37(6), 2559, 1998
  19. Geldart D, "Gas Fluidization Technology," John Wiley and Sons, Chichester, 88, 1986
  20. San Jose MJ, Olazar M, Benito PL, Bilbao J, Inst. Chem. Eng., 73, 473, 1995
  21. Choi JH, Chang IY, Shun DW, Yi CK, Son JE, Kim SD, Proceedings of the 6th Asian Conference on Fluidized-Bed and Three-Phase Reactors, Chun, H.S. and Kim, S.D. eds, 31-36, 1998
  22. Bi H, Fan LS, AIChE J., 38(2), 297, 1992
  23. Ryu HJ, Choi JH, Theor. Appl. Chem. Eng., 3, 1065, 1997
  24. Kunii D, Levenspiel O, "Fluidization Engineering," 1st ed., John Wiley and Sons, 1969