Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.37, No.3, 387-392, 1999
Methylosinus trichosporium PP358에 의한 트리클로로에틸렌의 분해 동력학
Degradation Kinetics of Trichloroethylene by Methylosinus trichosporium PP358
메탄자화균 M.trichosporium PP358을 이용하여 대표적인 난분해성 유기염소화합물인 트리클로로에틸렌(TCE)의 분해 동력학에 대한 연구를 수행하였다. 환원제로 20 mM의 formate가 첨가된 경우 TCE 분해는 Michaelis-Menten 동력학을 따랐고, 이때 최대 비분해속도(Vmax)및 포화상수(Km)는 각각 14.0nmol/min·mg cell과 124μM로 측정되었다. 메탄과 메탄올은 TCE분해에 경쟁방해를 하였고 각각의 저해상수(Ki)는 107μM과 3.4mM이었다. Formate가 환원제로 첨가되지 않은 경우 TCE분해에 미치는 메탄과 메탄올의 영향은 좀 더 복잡한 양상을 나타내었다. 먼저 낮은 농도에서는 메탄과 메탄올의 첨가가 TCE 분해를 촉진하였으나, 고농도에서는 저해제로 작용하였다. 촉진제로 작용하는 영역에서 TCE 최대 비분해 속도는 formate첨가시 분해속도의 60%(메탄 첨가시) 및 80%(메탄올 첨가시)이었다. 메탄 및 메탄올의 첨가에 따른 복잡한 분해양상을 동력학적으로 설명하기 위해 수학적인 모델을 도입하였고, 모델식은 실험값과 잘 일치함을 알 수 있었다.
Degradation kinetics of trichloroethylene(TCE) by the resting-cell of the mathanotroph Methylosinus trichosporium PP358 was studied. When 20 mM formate was present in the reaction mixture as a reducing agent, the rate of TCE degradation followed the Michaelis-Menten kinetics and the maximum specific degradation rate(Vmax) and saturation constant (Km) were 14.0 nmol/min·mg cell and 124 μM, respectively. Methane and methanol inhibited the TCE degradation in a competitive mode and their inhibition constants(Ki) were estimated to be 107 μM and 3.4 mM, respectively. In the absence of formate, methane and methanol showed a more complex effect on the TCE degradation. At low concentrations, both substrates stimulated the degradation, while at high concentrations, they inhibited the degradation. The maximum specific degradation rate with methane or methanol was about 60 % or 80 % of the maximum specific degradation rate obtainable with added formate. Kinetic equations describing the complex effect of methane or methanol were proposed and the relevant kinetic constants were determined.
[References]
  1. Anthony C, "The Biochemistry of Methylotrophs," Academic, New York, NY, 1982
  2. Ghisalba O, Henzer F, Experimentia, 38, 218, 1982
  3. DOE office of policy, planning, and analysis: Jan. Department of Energy, U.S.A., 1988
  4. Park S, Choo SR, Korean J. Biotech. Bioeng., 8(4), 341, 1993
  5. Oldenhuis O, Vink RMJM, Jessen DB, Withalt B, Appl. Environ. Microbiol., 55, 2819, 1989
  6. Tsien HC, Brusseau GA, Hanson RS, Wackette LP, Appl. Environ. Microbiol., 57, 228, 1991
  7. Cohen LA, McCarty PL, Appl. Environ., Microbiol., 57, 228, 1991
  8. Fan AM, "Reviews of Environmental Contamination Toxiclogy,", Springer-Verlag, New York, NY, 1988
  9. Westrich JJ, Mello JW, Thomas RF, J. Am. Wat. Works Assoc., 5(5), 52, 1984
  10. Wilson JT, Wilson BH, Appl. Environ. Microbiol., 49(1), 242, 1985
  11. Oldenhuis R, Oedzes JY, van der Waarde JJ, Janssen DB, Appl. Environ. Microbiol., 57(1), 7, 1991
  12. Oldenhuis R, Vink RLJM, Janssen DB, Witholt B, Appl. Environ. Microbiol., 55(11), 2819, 1989
  13. Broholm K, Christensen TH, Jensen BK, Water Res., 26(9), 1177, 1992
  14. Henry SM, Galic DG, Appl. Environ. Microbiol., 57, 236, 1991
  15. Newman LM, Wackett LP, Appl. Environ. Microbiol., 57, 2399, 1991
  16. Phelps PA, Agarward SK, Speital GE, Georgiou G, Appl. Environ. Microbiol., 58(11), 3701, 1992
  17. Fitch MW, Spetial GE, Georgiou G, Appl. Environ. Microbiol., 62(3), 1124, 1996
  18. Kang MS, Hwang JW, Park S, Korean J. Biotech. Bioeng., 10(2), 212, 1995
  19. Kang JM, Song HH, Kim KT, Park S, J. Res. Inst. Ind. Technol., 50, 147, 1996
  20. Taylor RT, Hanna ML, "Bioaugmentation for Site Remediation," Battelle Press, 1995
  21. Speitel GE, Thompson RC, Weissman D, Water Res., 27(1), 15, 1993
  22. Shuler ML, Kargi F, "Bioprocess. Engineering, Basic Concepts," Prentice Hall, 1992
  23. Segel IH, "Biochemical Calculations," 2nd ed, John Wiley & Sons, Inc., New York, NY, 1968