Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.37, No.3, 381-386, 1999
GC 전극에서 황산 용액 중 벤젠의 전기화학적 산화
Electrochemical Oxidation of Benzene in Sulfuric Acid at Glassy Carbon Electrode
Glassy carbon(GC) 전극에서 황산 용액에 용해된 벤젠의 전기화학적 산화 거동 연구가 순환 전압전류와 대 시간 전류 측정 방법을 통해 수행되었고 이 결과는 Pt전극에서 얻어진 결과와 비교되어 GC전극에서 벤젠의 산화 반응 기구가 제시되었다. 벤젠은 처음 산소 발생 전위에서 GC 전극에 흡착된 활성 산소에 의해 benzoquinone으로 산화되었다. GC 전극은 벤젠 용액으로부터 benzoquinone 또는 hydroquinone을 선택적으로 생산하는데 사용될 수 있다고 제안될 수 있었고 이때 공급 전위는 GC전극의 부식을 최소화할 수 있는 2.1V(vs. RHE) 이하이어야 하며, 벤젠의 산화는 사용되는 전극에 따라 다른 경로로 산화됨을 확인하였다.
The benzene oxidation dissolved in sulfuric acid was investigated at a glassy carbon(GC) electrode by recording cyclic voltammograms and chronoamperograms to see its electrochemical behavior with changes of several parameters. Some of the results were compared with those at Pt electrode and a probable mechanism for benzene oxidation at GC electrode was suggested. Benzene was observed to be oxidized at first into benzoquinone by some active oxygen adsorbed on GC electrode in the oxygen evolution region. The glassy carbon electrode has been proposed to be suitable to produce selectively benzoquinone or hydroquinone from benzene solution. The applied potential for benzene oxidation had to be less than 2.1 volt vs. RHE to prevent electrode damage due to corrosion in a long operation. The benzene oxidation mechanism and its products were confirmed to depend on the electrode to be used.
[References]
  1. Chuang KT, Cheng S, Tong S, Ind. Eng. Chem. Res., 31, 11, 1992
  2. Bard AJ, Flarsheim WM, Johnston KP, J. Electrochem. Soc., 135, 8, 1988
  3. Yamanaka I, Akimoto T, Otsuka K, Electrochim. Acta, 39(17), 2545, 1994
  4. Otsuka K, Kunieda M, Yamagata H, J. Electrochem. Soc., 139, 2381, 1992
  5. Clarker JS, Ehigamusoe RE, Kuhn AT, J. Electroanal. Chem., 70, 333, 1976
  6. Gattrell M, Kirk DW, Can. J. Chem. Eng., 68, 997, 1990
  7. Bard AJ, Flarsheim WM, Jonston KP, J. Electrochem. Soc., 135, 1939, 1988
  8. Kihara S, Yoshida Z, Aoyagi H, Bunseki Kagaku, 40, 309, 1991
  9. Kim KW, Lee EH, Yoo JH, Sep. Sci. Technol., 34(13), 2627, 1999
  10. Throp HH, J. Chem. Educ., 69, 250, 1992
  11. Proctor A, Sherwood PMA, Carbon, 21, 53, 1983
  12. Belilby AL, Sasaki TA, Stern HM, Anal. Chem., 67, 976, 1995
  13. Bard AJ, "Encyclopedia of Electrochemistry of Elements," Vol. VII, Marcel Dekker, Inc., N.Y., 1976
  14. Yamanaka I, Otsuka K, J. Electrochem. Soc., 138, 1033, 1991
  15. Cabaniss GE, Diamantis AA, Murphy WR, Linton W, Meyer TJ, J. Am. Chem. Soc., 107, 1845, 1985
  16. Watanabe M, Motoo S, J. Electroanal. Chem., 60, 267, 1975
  17. Kuppuswamy M, M.S. Thesis, Case Western Reserve University, Cleveland, U.S.A., 1998
  18. Bockris JOM, Wroblow H, Gileadi E, Piersma BJ, Trans. Faraday Soc., 61, 2531, 1965