Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.37, No.3, 373-380, 1999
고정층 촉매 반응기에 대한 열전달 현상 및 반응속도 해석
Heat Transfer Phenomena and Reaction Rate Analysis for the Fixed-Bed Catalytic Reactor
o-Xylene의 부분산화로부터 무수프탈산을 생산하는 고발열의 고정층 촉매 반응기를 열전달 현상과 반응속도 해석을 목적으로 연구하였다. 고발열을 수반하는 고정층 촉매 반응기의 전형적인 문제는 반응기의 입구영역에서 과도한 산화 반응으로 인한 심한 온도상승을 일으키는 열점과 연관되어 있다. 열점의 생성은 목적 생성물의 수율감소, 반응기의 불안정한 거동, 열점영역에서의 급격한 촉매 활성 저하는 물론 극단적인 경우 반응기의 폭발로 연결될 수 있다. 고발열 반응을 수반하는 고정층 촉매 반응기 내에서의 열전달 현상은 열전달 매개변수들을 통해 고찰하였으며, 열문제의 근본적인 요인인 반응속도에 대한 연구를 수행하였다.
The highly exothermic fixed-bed catalytic reactor for the partial oxidation of o-xylene to phthalic anhydride was studied with the objective of analyzing heat transfer phenomena and reaction rate. The conventional problem of highly exothermic fixed-bed catalytic reactor is closely associated with a hot spot which leads to excessive temperature rise due to immoderate oxidation reaction at inlet region of reactor. At some location of axial direction hot spot gives rise to decrease of yield for desired product, unstable operation of fixed-bed catalytic reactor, rapid activity reduction of catalyst at hot spot zone, and explosion of reactor in extreme cases. The heat transfer phenomena in such a highly exothermic fixed-bed catalytic reactor are studied by using heat transfer parameters and the reaction rate which is the essential cause of heat problem is also studied.
[References]
  1. Wainwright MS, Foster NR, Catal. Rev.-Sci. Eng., 19, 211, 1979
  2. Calderbank PH, Adv. Chem. Ser., 133, 646, 1974
  3. Foster NR, Wainwright MS, Process Chem. Eng., 31(3), 28, 1978
  4. Froment GF, Bischoff KB, "Chemical Reactor Analysis and Design," John Wiley & Sons, New York, 1990
  5. Smith TG, Carberry JJ, Chem. Eng. Sci., 30, 221, 1975
  6. Froment GF, 1st Ind. Symp. Chem. Reaction Engng., Washington, 1970
  7. Froment GF, Adv. Chem. Ser., 109, 1, 1972
  8. Karanth NG, Hughes R, Catal. Rev.-Sci. Eng., 9(2), 119, 1974
  9. Thomas GS, Carberry JJ, Chem. Eng. Sci., 30, 221, 1975
  10. Parent YO, Caram HS, Coughlim RW, AIChE J., 29, 443, 1983
  11. Selim MS, Lawrence BE, Jack BH, Ind. Eng. Chem. Process Des. Dev., 15(1), 184, 1976
  12. Von Doesburg, de Jong WA, Chem. Eng. Sci., 31, 45, 1976
  13. Rosendall B, Finlayson BA, Comput. Chem. Eng., 19(11), 1207, 1995
  14. Mears DE, Ind. Eng. Chem. Fundam., 15(1), 20, 1976
  15. Young LC, Finlayson BA, Ind. Eng. Chem. Fundam., 12(4), 412, 1973
  16. Carberry JJ, Wendel M, AIChE J., 9, 129, 1963
  17. Borkink JGH, Westerterp KR, Chem. Eng. Technol., 15, 371, 1992
  18. Westerterp KR, van Swaaij, Beenackers AACM, "Chemical Reactor Design and Operation," J. Wiley and Sons, New York, 1984
  19. Westerterp KR, Ptasinski KJ, Chem. Eng. Sci., 39, 235, 1984
  20. Borkink JGH, Borman PC, Westerterp KR, Chem. Eng. Commun., 121, 135, 1993
  21. Yun YS, Park PW, Rho HL, Jeong YO, HWAHAK KONGHAK, 35(3), 380, 1997
  22. Yun YS, Park PW, Jeong YO, Han SB, HWAHAK KONGHAK, 35(5), 717, 1997
  23. Jeong YO, Ph.D. Dissertation, University of Houston, U.S.A., 1989
  24. Yoon YS, Ph.D. Dissertation, Pusan National University, 1998
  25. Quinta Ferreira RM, Costa AC, Rodrigues AE, Comput. Chem. Eng., 16, 721, 1992