Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.37, No.1, 8-13, 1999
산소전달계수 및 경험적 기질공급방법이 Baker's Yeast의 유가식배양에 미치는 영향
Effect of Oxygen-Transfer Coefficient and Empirical Substrate Feeding Policy on Baker’s Yeast Fed-Batch Cultivation
Baker's yeast의 유가식배양에서 최적의 수율과 생산성을 위하여 KLa(산소전달계수)와 3가지 경험적 기질공급방법의 영향을 조사하였다. 발효기내의 교반속도(100에서600rpm)의 통기속도(1.0, 1.5, 2.0vvm)를 변화시키면서 KLa값을 측정하였고, 통기속도는 1.5vvm으로 일정하게 유지하고 각각의 교반속도(300에서 600rpm)에서 유가식배양을 실시하여 수율과 생산성을 조사하였다. KLa값은 교반속도와 통기속도에 비례하여 빠르게 증가하였다. 기질공급pattern은 sigmoidal한 공급이 최적으로 나타났고, 최적의 총 기질공급량과 생산성은 KLa 값에 크게 의존하였으나 500rpm부터는 일정한 값을 유지하였고, 수율을 KLa값이 증가함에 따라 약간씩 감소하는 경향을 나타냈다. 이것은 molasses 투입량 증가에 의한 molasses내에 존재하는 저해작용물질축적과 발효대사산물의 축적, 점도의 증가, cell농도의 증가 등에 의해 cell성장속도와 산소전달속도가 감소한 것으로 사료되고, 본 발효기는 500에서 600rpm부근에서 운전하는 것이 최적조건으로 판단된다.
The effect of KLa(Oxygen Transfer Coefficient) and substrate feeding policy on the optimum cell yield and productivity was investigated in the baker's yeast fed-batch cultivation. KLa was measured at various agitation speed (100 to 600 rpm) and aeration rate (1.0, 1.5, 2.0 vvm), and the cell yield and productivity of fed-batch cultivation was determined at each agitation speeds (300 to 600 rpm) and constant aeration rate (1.5 vvm). KLa value was increased proportionally with increasing agitation speeds and aeration. Substrate feeding pattern was optimum in sigmoidal feeding. The optimum total fed-sugar and productivity was largely dependent on the KLa and did not change at above 500 rpm, and the cell yield was decreased gradually as the KLa increased. It is considered that the increase of the accumulation of inhibitory substances in the molasses by the increase of molasses feeding, the accumulation of fermentation metabolites, the viscosity and cell concentration of fermentation broth, and so forth was decreased the cell growth rate and oxygen transfer rate. So, the optimum operation condition of this fermentor was estimated to near 500 to 600 rpm.
[References]
  1. White J, "Yeast Technology," Chapman & Hall Ltd., 13, 1954
  2. Reed G, Peppler HJ, "Yeast Technology," The AVI Publishing Company, Inc., 53, 1973
  3. Berry DR, Russel I, Stewart GG, "Yeast Biotechnology," Allen & Unwin, 471, 1981
  4. Ishkawa S, Nose Y, Ohashi M, Nedate S, Kanazawa K, Ichikawa M, Japanese Patent, 9883, 1976
  5. Hideki F, Takesh S, Wataru O, Hisashi M, J. Ferment. Technol., 56, 354, 1978
  6. Wang HY, Cooney CL, Wang DIC, Biotechnol. Bioeng., 19, 69, 1977
  7. Aiba S, Nagai S, Nishizawa Y, Biotechnol. Bioeng., 18, 1001, 1976
  8. Aiba S, Biotechnol. Bioeng. Simp., 9, 270, 1976
  9. Namba A, Hirota F, Nagai S, J. Ferment. Technol., 59, 383, 1981
  10. Park CH, Geng CQ, Korean J. Chem. Eng., 13(6), 612, 1996
  11. Patkar A, Lee DH, Seo JH, Korean J. Chem. Eng., 10(3), 146, 1993
  12. Johnson M, Andre G, Chavarie C, Archambault J, Biotechnol. Bioeng., 35, 43, 1990
  13. Zhang S, Handa-Corrigan A, Spier RE, Biotechnol. Bioeng., 40, 252, 1992
  14. Fessler J, Wines Vines, 22, 17, 1941
  15. Lane, Eynone, J. Soc. Chem. Ind., 42, 32T, 1923