Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.37, No.1, 1-7, 1999
초미립 TiO2 입자 제조를 위한 확산 화염반응기의 간략화된 모델
A Simplified Model on Diffusion flame Reactor for Preparation of Ultrafine TiO2 Particles
본 연구에서는 확산 화염반응기에서의 초미립 TiO2 분말 입자 제조시의 플러그 흐름 가정에 기초한 간략화된 모델식을 제시하였다. 모델식에서는 TiC14 수지식, 에어로졸의 0차, 1차, 2차 모멘트 수지식을 수치모사로 풀었다. 반응기내의 공정변수로는 반응기 온도와 반응물의 농도, 전체 기체유량을 변화시키며 확산 화염반응기내에서의 TiO2 미립자의 농도 및 입도크기와 표준편차 등을 반응기 위치에 따라 이론적으로 계산하였다. 전체 기체유량이 증가할수록 또는 반응기 화염온도가 감소할수록 반응기 출구에서의 최종 TiO2 입자 농도는 증가하였다. 반면에 반응기 화염온도가 증가할수록, 초기 TiCl4 농도가 증가할수록, 전체 기체유량이 감소할수록 생성된 TiO2 입자 크기는 증가하였다.
We have proposed a simplified model equations for a diffusion flame reactor to prepare ultrafine TiO2 powders, based on the assumption of plug flow. The model equations such as mass balance of TiC14, the 0th, 1st, and 2nd moment balances of aerosol were solved by a numerical simulation. The particle characteristics such as the concentrations, sizes and standard deviation of TiO2 particles were theoretically investigated along the reactor length, varying the process conditions of flame temperatures, total gas flow rates and inlet reactant concentrations. It is found that the TiO2 particle concentration at the reactor exit becomes higher, as the total gas flow rate increases, and also as the flame temperature decreases. On the other hand, the TiO2 particle size increases, as the flame temperature and the inlet TiC14 concentration increase and as the total gas flow rate decreases.
[References]
  1. Sohn HY, Park KH, Lee KI, Chem. Ind. Technol., 7, 336, 1989
  2. Hyun BS, Kim KS, HWAHAK KONGHAK, 33(2), 183, 1995
  3. Okuyama K, Ohshima K, Tsuto K, KONA, 9, 79, 1991
  4. Lee IS, Kim JW, Youn CJ, Park SK, Hahn YB, Korean J. Chem. Eng., 13(5), 473, 1996
  5. Okuyama K, J. Aerosol Sci., Sup., S7, 1991
  6. Haddeland GE, Morikawa S, "Titanium Dioxide Pigment," SRI Report No. 117, Menlo Park, California, 1978
  7. Park KH, Chem. Ind. Technol., 11, 14, 1993
  8. Kim KS, 2nd SIChEM Symp. Seoul, Korea, 229, 1990
  9. Sclafani A, Palmisano L, Schiavello M, J. Phys. Chem., 94, 829, 1990
  10. Akhtar MK, Xiong Y, Pratsinis SE, AIChE J., 37, 1561, 1991
  11. Friedlander SK, "Smoke, Dust and Haze," Wiley, New York, 1977
  12. Seinfeld JH, "Atmospheric Chemistry and Physics of Air Pollution," Wiley, New York, 1986
  13. Brock JR, "Simulation of Aerosol Dynamics in Theory of Disperse Multiflow," (Mayer, R.E. ed.), Academic Press, New York, 1983
  14. Hinds WC, "Aerosol Technology," Wiley, New York, 1982
  15. Lee KW, J. Colloid Interface Sci., 92, 31, 1983
  16. Lee KW, Chen H, Gieseke, Aerosol Sci. Technol., 3, 53, 1984
  17. Kim KS, Pratsinis SE, AIChE J., 34, 912, 1988
  18. Kim KS, Hyun BS, J. Korean Ceram. Soc., 32, 1246, 1995
  19. Hyun BS, Kim KS, HWAHAK KONGHAK, 34(2), 243, 1996
  20. Pratsinis SE, Kim KS, J. Aerosol Sci., 20, 101, 1988
  21. Gosman AD, Laubder BE, Reece GJ, "Computer-Aided Engineering Heat Transfer and Fluid Flow," Wiley, New York, 1985
  22. Anderson DA, Tannerhill JC, Pletcher RH, "Computational Fluid Mechanics and Heat Transfer," McGraw-Hill, New York, 1984
  23. Ferzinger JH, "Numerical Methods for Engineering Application," Wiley, New York, 1981