Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.36, No.6, 924-929, 1998
활성제 투입시기와 배합조건이 타이어용 고무배합물의 공정안정성에 미치는 영향
Processing Stability of a Rubber Compound for Tire as Affected by Addition Sequence of Activator and Mixing Conditions
가황촉진제를 활성화시키는 역할을 하는 산화아연 분말이 배합기에 투입되는 시기와 카본블랙 혼입시 배합온도 및 배합시간을 달리하며 배합한 미가황 고무배합물들이 나타내는 스코치시간과 가황속도를 조사하여 이 배합물이 압연 또는 압출 등 가공 처리될 때 스코치없이 안정하게 가공될 수 있는 최적 배합조건을 결정하였다. 산화아연을 카본블랙 혼합단계인 1차배합시에 투입하여 363K로 4분간 배합 후 재차 유황과 촉진제 N-t-butylbenzothiazol sulfenamide를 혼입하여 333K에서 2분간 배합시킨 배합물이 1차에서 383K로 7분간 배합시켰던 배합물이나 다른 것들에 비해 10%나 길어진 스코치시간과 동일한 가황속도를 나타내어, 이 조건으로 배합하면 배합이나 가황에 소요되는 에너지가 절약되면서 품질이 떨어지지 않는 제품이 될 수 있음을 가교시킨 이 고무의 기계적 물성을 만능시험기로 측정하여 증명하였다.
Mixing conditions such as addition sequence of zinc oxide powder, an activator to accelerate vulcanization, and temperature and time of carbon black mixing stage have been changed to measure both of scorch time and cure rate of the green compound and to find optimum mixing condition producing a green compound that would proceed successfully without any scorch during calendering and extrusion steps, etc. Since the green compound prepared from adding zinc oxide in the first stage with mixing at 363 K for 4 minutes and also treated further in sulfur mixing second stage at 333K for 2 minutes has lengthened the scorch time 10% more and has showed the same cure rate as the others mixed at higher temperature for longer period in the first stage, it is concluded that the above mixing conditions may save the cost of preparing green compound and its premature vulcanization preserving the quality of the product, as mechanical properties of the cured rubber measured by universal test machine had exhibited.
[References]
  1. Farnsworth M, Kline C, "Zinc Chemical," Charles Kline and Co., New York, 1983
  2. Bateman L, Moore CG, Poter M, Saville B, "The Chemistry and Physics of Rubber Like Substances," L. Bateman, Ed., Ch. 19 Wiley, New York, 1963
  3. Coran AY, Rubber Chem. Technol., 38, 1, 1965
  4. Parks CR, Parks DK, Chapman DA, Rubber Chem. Technol., 45, 467, 1972
  5. Hall WE, ACS meeting, Rub. Chem. Division, Chicago 1970, Paper 14, 1970
  6. Poh BT, Tang WL, J. Appl. Polym. Sci., 55(3), 537, 1995
  7. Chang DH, Ph.D. Dissertation, Chonnam National Univ., Kwang-ju, Korea, 1996
  8. Kruger FWH, McGill WJ, J. Appl. Polym. Sci., 42, 2643, 1991
  9. Gradwell MH, Mcgill WJ, J. Appl. Polym. Sci., 51(1), 177, 1994
  10. Gradwell MH, Mcgill WJ, J. Appl. Polym. Sci., 58(12), 2193, 1995