Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.36, No.6, 839-845, 1998
Pack Cementation법으로 제조된 MCFC용 합금 Anode의 특성
Characteristics of Nickel Alloy Anodes for MCFC PREpared by Pack Cementation
용융탄산염 연료전지(MCFC)용 anode 재질로써 촉매 성능면이나 가격면에서 가장 적합한 것은 Ni이나, 순수한 Ni만으로 제조된 anode는 고온에서 크립(creep) 현상이 커서 이의 해결책이 강구되어져야만 한다. 본 연구에서는 이 크립 현상을 감소시키기 위한 한 방법으로 pack cementation 기법을 이용하여 다공성 Ni-anode 소재에 Ni-Al, Ni-Cr, Ni-Al-Cr등의 합금 형태(금속간 화합물 또는 고용체)가 되도록 처리한 후 해당 재질들의 크립 특성을 검토하였다. 이때 팩(pack) 성분은 증착시키려는 금속 분말과 활성제(NaCl, NH 4Cl), 그리고 비활성 충전물(Al2O3)로 구성되었고 온도는 550-900℃의 범위에서 0.5-5시간 동안 반응시켰다. 다공성 Ni소재에 해당 금속의 증착량은 반응 시간의 제곱근에 비례하는 형태를 나타내었으며 증착량이 증가할수록 다공성 Ni 소재 anode의 기공도는 선형으로 감소하였다. 순수한 Ni소재 anode에 비하여 합금 형태 anode는 크립 현상이 크게 감소함을 보였고 특히 Al과 Cr이 동시에 증착된 합금 전극의 수축률이 가장 낮은 1-2 %의 값을 보였다.
The Pack cementation process of metal(Al, Cr) halide vapor on a porous pure Ni-anode substrate fur molten carbonate fuel cell was studied to improve creep resistance of the anode substrate. The pack consists of metal powder(Al, Cr or Al-Cr mixture), activator(NaCl or NH4Cl) and inert filler(Al2O 3). The pack cementations on the nickel-anode substrate were carried out at 550-900℃ for 0.5-5.0 hours. It was found that various intermetallic compounds for Al(Ni3Al, NiAl, or Ni2A13) and some of solid solution between Ni and Cr were formed on the porous Ni-anode substrate and the deposition weight of metals depending on time was parabolic. The porosity of the alloy anodes(intermetallic or solid solution) decreases linearly with deposition content of metallic additives. The Ni-anodes deposited as Ni-Al intermetallic form and codeposited with Al and Cr showed good performance against creep and its pore structure did not change after pack cementation. The Ni-anode substrate, which Al and Cr were codeposited on, showed about 1% creep strain under 650℃ and 100 psi after 100 hour.
[References]
  1. Appleby AJ, Foulkes FR, "Fuel Cell Handbook," Van Nostrand Reinhold, N.Y., 1989
  2. Chun HS, Lim JH, "Fuel Cell: The Clean Energy for 21st Century," J. Institute of Ind. & Tech., Korea University, 30, 163, 1994
  3. Chung HC, Park KP, Lim JH, Chun HS, "A Study on Pack Aluminization of Nickel Anode for Molten Carbonate Fuel Cell," J. Institute of Ind. & Tech., Korea University, 30, 59, 1994
  4. Chun HS, Park JH, Chung HC, Wee JH, "A Ni-Al Anode for Molten Carbonate Fuel Cell," Proc. The 2nd IFCC, NEDO, 433, 1996
  5. Chun HS, Chung HC, Youn JH, Park KP, "Method for Forming MCFC Anode," U.S. Patent, 5,415,833, 1995
  6. Chun HS, Park GP, Lim JH, Kim K, Lee JK, Moon KH, Youn JH, J. Power Sources, 49, 231, 1994
  7. Plomo L, Veldhuis JB, "Status of MCFC Material Development at ECN," III-B-1, Proc. IFCC, NEDO, FEB., 1992
  8. Lacovangelo CD, J. Electrochem. Soc., 133, 2410, 1986
  9. Yamamasu Y, Kakihara T, Kasai E, Morita T, "Component Development and Durability Test of MCFC," III-B-2, Proc. IFCC, NDEO, FEB., 1992
  10. Hwang YL, Kim SJ, Kang SK, Korean Energy Eng. J., 2(3), 293, 1993
  11. Levine SR, Caves RM, J. Electrochem. Soc., 121, 1051, 1974
  12. Okada H, Iwase Y, Takeuchi M, Nishimura S, Denki Kagaku, 60, 785, 1992
  13. Kim SK, Shin WK, J. Korean Inst. Surf. Eng., 25, 4, 1992
  14. Dieter GE, "Mechanical Metallurgy," 3th Ed., McGraw-Hill, 1986