Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.41, No.6, 795-801, 2003
무전해 구리도금에 의한 활성탄소의 NO 제거
NO Removal of Electrolessly Copper-plated Activated Carbons
본 연구에서는 활성탄소(activated carbons; ACs)의 표면에 무전해 도금 방법으로 Cu를 도입하여 Cu 도입시의 활성탄소의 기공특성 변화 및 Cu가 도입된 ACs를 이용한 NO 제거 반응에 대하여 고찰하였다. Cu가 도입된 ACs의 표면특성은 FT-IR과 scanning electron microscope (SEM)을 이용하여 관찰하였으며, N2/77 K 등온 흡착 특성은 BET식, D-R plot, H-K 및 BJH식을 이용하여 확인하였고, NO 제거효율은 가스크로마토그래프를 이용하여 분석하였다. 실험결과, 도금 시간이 증가함에 따라 ACs 표면의 Cu의 양은 점차 증가하였으나, ACs의 흡착 특성인 비표면적, 기공부피 등의 기공구조는 미약하게 감소하는 경향을 보였다. 반면 NO 제거효율은 도입된 Cu의 양이 증가함에 따라 비례적으로 증가하였으며, 이러한 결과는 ACs 표면에 도입된 Cu에 의해 Cu-ACs 표면에서의 NO 제거 반응이 가속되었기 때문으로 판단된다.
In this study, the activated carbons (ACs) containing copper metal were prepared by electroless copper plating technique, in order to remove NO. The surface and structural properties of the ACs were determined by FT-IR and scanning electron microscope (SEM), respectively. N2/77 K adsorption isotherm characteristics, including the specific surface area and pore volume, were investigated by BET, D-R plot, H-K, and BJH methods. And NO removal efficiency was confirmed by gas chromatographic technique. The copper content on ACs increased as the plating time increased. However, a slightly gradual decrease of adsorption properties, such as BET’s specific surface area and total pore volume, was observed in ACs in the presence of copper metal. NO removal efficiency of all Cu-ACs was higher than that of untreated ACs, and increased with the copper content on ACs. These results indicated that copper metal on Cu-ACs strongly accelerated catalytic reduction of NO on Cu-ACs surfaces, though it caused the decrease of the adsorption properties of original ACs.
[References]
  1. Calvert S, Englund HM, Handbook of Air Pollution Technology, John Wiley & Sons, New York, 1984
  2. Noll KE, Gounaris V, Hou WS, Adsorption Technology for Air Water Pollution Control, Lewis, Michigan, 1992
  3. Bansal RC, Donnet JB, Stoeckli F, Active Carbon, Marcel Dekker, New York, 1998
  4. Selvaraj M, Pandurangan A, Seshadri KS, Sinha PK, Lal KB, Appl. Catal. A: Gen., 242(2), 347, 2003
  5. Subbiah A, Cho BK, Blint RJ, Gujar A, Price GL, Yie JE, Appl. Catal. B: Environ., 42(2), 155, 2003
  6. Park SJ, Jang YS, J. Colloid Interface Sci., 237(1), 91, 2001
  7. Carabineiro SA, McKee DW, Silva IF, Carbon, 39(3), 451, 2001
  8. Matos J, Laine J, Appl. Catal. A: Gen., 241(1-2), 25, 2003
  9. Zemlyanov D, Schlogl R, Surf. Sci., 470(1-2), L20, 2000
  10. Carabineiro SAC, Ramos AM, Vital J, Loureiro JM, Orfao JJM, Fonseca IM, Catal. Today, 78(1-4), 203, 2003
  11. Guo J, Lua AC, Sep. Purif. Technol., 30(3), 265, 2003
  12. Ryu SK, Kim SY, Gallege N, Edie DD, Carbon, 37(10), 1619, 1999
  13. Ang LM, Hor TSA, Xu GQ, Tung CH, Zhao SP, Wang JLS, Carbon, 38(3), 363, 2000
  14. Park BJ, Park SJ, Ryu SK, J. Colloid Interface Sci., 217(1), 142, 1999
  15. Brunauer S, Emmett PH, Teller E, J. Am. Chem. Soc., 60, 309, 1938
  16. Dubinin MM, Plavnik GM, Carbon, 6, 183, 1968
  17. Horvath G, Kawazoe K, J. Chem. Eng. Jpn., 16(6), 470, 1983
  18. Khalili NR, Campbell M, Sandi G, Golas J, Carbon, 38(14), 1905, 2000
  19. Vaskelis A, Coatings Technology Handbook, Marcel Dekker, New York, 1990
  20. Park SJ, Jang YS, Rhee KY, J. Colloid Interface Sci., 245(2), 383, 2002
  21. Lee SH, Choi CS, Fuel Process. Technol., 64(1-3), 141, 2001
  22. Do DD, Adsorption Analysis: Equilibria and Kinetics, Imperial College Press, London, 1998
  23. Chen Z, Mu L, Ignowski J, Kelly B, Linjewile TM, Agarwal PK, Fuel, 80(9), 1259, 2001
  24. Park SJ, Jang YS, Kawasaki J, HWAHAK KONGHAK, 40(6), 664, 2002
  25. Park SJ, Kim KD, J. Colloid Interface Sci., 212(1), 186, 1999