Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.41, No.6, 728-735, 2003
Simulated Moving Bed를 이용한 Bupivacaine의 키랄 분리 (2) 모사에 의한 최적 조건 결정
Chiral Separation of Bupivacaine by Simulated Moving Bed (2) Determination of Optimum Condition by Simulation
본 연구에서는 경부외 마취제로 사용되고 있는 S-bupivacaine을 SMB를 이용하여 R-bupivacaine으로부터 분리하였다. 단일칼럼을 이용한 실험을 통해서 비선형 흡착평형식과 실험식으로부터 물질전달계수를 얻었다. PIM을 이용하여 얻은 경쟁 Langmuir 흡착평형식에서의 매개변수 a는 R-bupibacaine은 6.20, S-bupivacaine은 8.79 매개변수 b는 각기 0.364, 0.922 ml/mg이었다. 이 매개변수들은 상용 모사기에 적용되어 두 키랄물질을 분리하기 위한 최적조업조건을 얻었고, 실험적으로 확인하기 위해서 Kromasil® CHI-TBB로 충진된 1 X 10 cm 칼럼이 2-2-2-2 구성으로 된 SMB를 이용하여 결과적으로 racemic bupivacaine을 98%이상 고순도로 분리하였다.
In this work, S-bupivacaine with the pharmacological activity of epidural anaesthesia was separated from R-bupivacaine by SMB (simulated moving bed). Nonlinear isotherm was suggested from the single column experiment and the mass transfer coefficient was obtained from an empirical equation. The parameters of a in competitive Langmuir adsorption equation empirically determined by PIM (pulsed input method) for R and S-bupibacaine were 6.20, 8.79 respectively, while those of b were 0.364, 0.922 ml/mg, respectively. These equilibrium and kinetic parameters were used by a commercially available simulator to find the optimum operating condition for resolving the two racemic mixtures. It was experimentally confirmed that based on these experimental conditions, the separation of bupivacaine enantiomers was successfully performed with the purity of more than 98% by SMB composed of eight column (2-2-2-2, 1×10 cm) packed with Kromasil® CHI-TBB.
[References]
  1. Bhushan R, Martens J, J. Pharm. Biomed. Anal., 8, 259, 1990
  2. Ahuja S, Chiral Separations by Chromatography, Oxford Univ. Press, New York, 2000
  3. Medvedovici A, Sandra P, Toribio L, David F, J. Chromatogr. A, 785, 159, 1997
  4. Pais LS, Loureiro JM, Rodrigues AE, AIChE J., 44(3), 561, 1998
  5. Miler L, Orihuela C, Fronek R, Honda O, J. Chromatogr. A, 849, 309, 1999
  6. Yang HY, Shim MH, Chang HK, Jang MH, Lee TH, Kim YJ, Chung JH, Kim CJ, Neurosci. Lett., 344, 33, 2003
  7. Mio Y, Fukuda N, Kusakari Y, Tanifuji Y, Anesthesiology, 97, 1168, 2002
  8. Gu XQ, Fryirs B, Mater LE, J. Chromatogr. B, 719, 135, 1998
  9. Yoon JY, Lee JK, Suh SS, Choi MH, Park TJ, HWAHAK KONGHAK, 41(6), 736, 2003
  10. Slater MJ, The Principles of Ion Exchange Technology, Butterw-worth, Heinemann, Oxford, 1991
  11. Storti G, Mazzotti M, Carra S, Morbidelli M, Chem. Eng. Sci., 44, 1329, 1989
  12. Mazzotti M, Storti G, Morbidelli M, AIChE J., 40(11), 1825, 1994
  13. Mazzotti M, Storti G, Morbidelli M, AIChE J., 42(10), 2784, 1996
  14. Guiochon G, Golshan-Shirazi S, Katti AM, Fundamentals of Preparative and Nonlinear Chromatography, Academic Press, Boston, 1994
  15. Choi YS, Lee JW, Row KH, HWAHAK KONGHAK, 38(4), 474, 2000
  16. Wilke CR, Chang P, AIChE J., 1, 264, 1955
  17. Partington J, An Advanced Treatise on Physical Chemistry, Vol. I, Fundamental Principles: The Properties of Gases, Longmans, Green, New York, 1949
  18. Grunberg L, Nissan AH, Nature, 164, 799, 1949