Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.41, No.5, 617-623, 2003
Sol-Gel법과 수열처리에 의한 단일 분포 기공을 갖는 Titania 나노 분말 제조
Preparation of Nano Size Titania Powders with Monomodal Pore Distribution by the Sol-Gel Method and Hydrothermal Treatment
Sol-Gel법에 의해 출발물질로 TTIP(titanium tetra-isopropoxide)를 사용하여 titania분말을 제조하였으며, 이 분말을 autoclave에서 수열처리하여 그 물성을 고찰하였다. 수열처리에 의해 얻어진 분말은 많은 나노기공을 갖고 있었으며, 아나타제의 결정상이 나타났다. Sol-gel법에 의해 제조한 후 400 ℃이상에서 열처리하여 얻어진 titania 분말은 1차 입자들 사이의 기공(intra-particle pores)과 2차 입자들 사이의 기공(inter-aggregated pores)이 공존하는 bimodal의 기공분포를 보이는 반면, 200 ℃에서 수열처리한 분말은 1차 입자들 사이의 기공만 존재하는 monomodal의 기공분포를 나타내었으며, 크기도 매우 작아졌고(40-50 nm), 비표면적의 증가(50-100%)와 분말의 응집도 감소(30-40%)등 물성의 괄목할 만한 향상을 가져왔다.
Titania powders were prepared from titanium tetra-isopropoxide (TTIP) by a sequence of sol-gel method and hydrothermal treatment. The powders made by sol-gel method followed by hydrothermal treatment exhibited an anatase crystalline phase with numerous nano-size pores. The pore size distribution of the powders prepared by sol-gel method and calcination above 400 ℃ was bimodal with fine intra-particle pores (space between primary particles) and larger inter-aggregated pores (space between secondary particles). The powders by the hydrothermal treatment at 200 ℃ showed a monomodal pore size distribution with only intra-particle pores. The properties of titania powders could be improved by means of hydrothermal treatment considerably; the size could be reduced to 40-50 nm, specific surface area could be increased by 50-100% and the ratio of agglomeration could be reduced by 30-40%.
[References]
  1. Akhtar MK, Pratsinis SE, Mastargelo SVR, J. Am. Ceram. Soc., 75, 3408, 1992
  2. Gesenhues U, Rentscher T, J. Solid State Chem., 143(2), 210, 1999
  3. Bischoff BL, Anderson MA, Chem. Mater., 7(10), 1772, 1995
  4. Morishige K, Kanno F, Ogawara S, Sasaki S, J. Phys. Chem., 89(20), 4404, 1985
  5. Jean JH, Ring TA, Langmuir, 2(2), 251, 1986
  6. Fujishima A, Hashimoto K, Watanabe T, TiO2 Photocatalysis Fundamentals and Applications, BKC. Inc., 124-126, 1999
  7. Augugliaro V, Loddo V, Palmisano L, Schiavello M, J. Catal., 153(1), 32, 1995
  8. Sopyan I, Watanabe M, Marasawa S, Hashimoto K, Fujishima A, Chem. Lett., 4, 723, 1994
  9. Song KC, Pratsinis SE, J. Am. Ceram. Soc., 84(1), 92, 2001
  10. Song KC, Pratsinis SE, J. Colloid Interface Sci., 231(2), 289, 2000
  11. Song KC, Pratsinis SE, J. Mater. Res., 15(11), 2322, 2000
  12. Oguri Y, Riman RE, Bowen HK, J. Mater. Sci., 23, 2897, 1988
  13. Cheng H, Ma J, Zhao Z, Qi L, Chem. Mater., 7(4), 663, 1995
  14. Kondo M, Shinozaki K, Ooki R, Mizutani N, J. Ceram. Soc. Jpn., 102(8), 742, 1994
  15. Yanagisawa K, Yamamoto Y, Feng Q, Yamasak N, J. Mater. Res., 13(4), 825, 1998
  16. Wang CC, Ying TY, Chem. Mater., 11(11), 3113, 1999
  17. Cullity BD, Elements of X-ray Diffraction, Addision-Wesley, Reading, MA, 100-102, 1978
  18. Lee BM, Shin DY, Han SM, J. Korean Ceram. Soc., 37(4), 308, 2000
  19. Gragg SJ, Sing KSW, Adsorption, Surface Area and Porosity, Academic Press, 111-194, 1982
  20. Liu KC, Anderson MA, J. Electrochem. Soc., 143(1), 124, 1996
  21. Kumar KN, Keizer K, J. Am. Ceram. Soc., 77, 1396, 1994
  22. Kim SY, Yu JH, Lee JS, Kim JR, Kim BK, J. Korean Ceram. Soc., 36(7), 742, 1999