Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.41, No.5, 577-584, 2003
CAE를 이용한 사출성형의 최적화
Application of CAE in Injection Molding Process
사출성형 공정조건에 따른 다양한 형태의 열과 변형 이력으로 최종 성형품의 기계적 물성이 현저히 달라지므로, A사의 29" TV backcover를 대상으로 제품의 디자인 과정에서 수지의 충전에 영향이 큰 제품의 두께를 부분적으로 조절하고 Mold Flow사의 CAE software(S/W)를 이용하여 유동현상을 해석하였다. 또한 실제로 측정한 점도와 전단속도 값(local database)과 표준 실험 장치에서 얻어낸 값(standard database)에 의한 해석결과를 비교 검토하였다. 그 결과 29" TV backcover 성형과정에서 수지의 유동 불균형을 해소하기 위하여, 유동에 정체가 발생하는 부분의 두께는 두껍게 하고 유동이 빠른 부분의 두께는 얇게하여 이상적인 수지의 유동패턴을 구현하였다. 실측한 local database와 기존의 standard database에 의한 해석 결과를 비교하여, 실측 점도가 다소 높고, 온도 분포의 편차가 조금 넓었음에도 불구하고, 두 가지 database에 의한 해석 결과는 비슷 하였다.
Injection molding process is influenced by the injection conditions such as various thermal history and deformation processes that affect mechanical properties of the fabricated product. The design of the 29-inch TV backcover modified with the alteration of the thickness of special parts. Then the flow analysis was performed using the CAE S/W of the Mold Flow Company. In addition, the analysis was performed using the measured viscosity(local database) at various shear rates and the results were compared with those using the standard database. In order to reduce the unbalanced flow of the molten resin, the thickness of the part, where the flow speed was slow, increased, while that of the part, where the flow speed was fast, reduced. As a result, the optimum condition based on the above modification of the special part of TV backcover is selected in terms of idealized flow pattern. In addition, the analyses based on the local database and the standard database showed no distinctive difference, although the measured viscosity was slightly higher and the temperature distribution was broader than by the standard database.
[References]
  1. Spencer RS, Gilmore GD, J. Colloid Sci., 6, 118, 1950
  2. Spencer RS, Gilmore GD, J. Appl. Phys., 21, 523, 1950
  3. Kamal MR, Kenig S, Polym. Eng. Sci., 12, 294, 1972
  4. Kamal MR, Kenig S, Polym. Eng. Sci., 12, 302, 1972
  5. Ballman RL, Shusman T, Toor HL, Ind. Eng. Chem., 51, 847, 1959
  6. Harry DH, Parrot RG, Polym. Eng. Sci., 10, 209, 1970
  7. Lord HA, Williams G, Polym. Eng. Sci., 15, 569, 1975
  8. Tadmor Z, Gogos CG, Principles of Polymer Processing, John Wiley & Sons, New York, 1979
  9. Kamal MR, Kuo Y, Doan PH, Polym. Eng. Sci., 15, 863, 1975
  10. Wang KK, Stevenson JF, Hieber CA, "Computer-Aided Injection Molding Syster," CIMP Progress Report, Mo. 4, 9, 1977
  11. Tadmor Z, Broyer E, Gutfinger C, Polym. Eng. Sci., 14, 660, 1974
  12. Friedl CF, McCaffrey NJ, "Crystallization Prediction in Injection Molding," SPE ANTEC Technical Papers, 50, 330, 1991
  13. Bakerdjian Z, Kamal MR, Polym. Eng. Sci., 17, 96, 1977
  14. White JL, Dee HB, Polym. Eng. Sci., 14, 211, 1974
  15. Chinag HH, "Simulation and Verification of Filling and Post-Filling Stages of the Injection-Molding Process," Ph.D. Thesis, University of Cornell, Ithaca, New York, 1989
  16. Sherbelis G, Friedl C, "The Importance of Low Temperature Viscosity to CAE Injection Molding Simulation," SPE ANTEC, 954, 1992
  17. Dietz W, White JL, Clark ES, Polym. Eng. Sci., 18, 277, 1978
  18. Chung TS, Ryan ME, Polym. Eng. Sci., 21, 271, 1981
  19. Sanschagrin B, Polym. Eng. Sci., 23, 431, 1983
  20. Kamal MR, Lafleur PG, Polym. Eng. Sci., 26, 103, 1986
  21. Wang KK, Shen SF, Cohen C, Hieber CA, Ricketson RC, Wang VW, Emerman S, "Integration of CAD/CAM for Injection Molded Plastic Parts, CIMP Progress Report," No. 12, 12, 1986
  22. Wang KK, Shen SF, Cohen C, Hieber CA, "Integration of CAD/CAM for Injection Molded Plastic Parts, CIMP Progress Report," No. 13, 13, 1987
  23. Austin C, Kennedy P, "Moldflow Data Theory," Moldflow Pty. Ltd., 1992
  24. Min N, Kim SW, Park CS, Lee MH, Lee KJ, HWAHAK KONGHAK, 35(4), 468, 1997