Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.36, No.5, 784-791, 1998
목질계 바이오매스에 대한 암모니아 재순환 침출공정 최적화
Optimization of Ammonia Recycled Percolation Process for Lignocellulosic Biomass Pretreatment
목질계 바이오매스의 주요 구성성분인 섬유소와 헤미셀룰로오스, 그리고 리그닌을 효과적으로 분리할 수 있는 전처리 공정으로 암모니아 재순환 침출 공정(ARP ; Ammonia Recycled Percolation)이 개발되었다. 본 연구에서는 ARP공정에 대한 초기 연구로 ARP공정의 타당성과 공정의 최적조건을 확립하여 전체ARP공정의 효율성에 대하여 조사하였다. ARP공정 에 크게 영향을 미칠 수 있는 주요 변수로 암모니아 농도, 반응 온도, 그리고 용매의 흐름속도를 선정하였다. 공정의 최적화 방법으로 위의 세 가지변수들에 대하여 반응표면 분석법을 이용하였다. 바이오매스의 분해에 의한 무게손실을 최소화하고, 리그닌의 함량을 감소시키고, 섬유소의 함량과 효소의 가수분해도를 최대화할 수 있는 ARP공정의최적 조건으로 암모니아 농도 ; 17.5%, 반응온도 ; 185℃, 그리고 용매 흐름속도 ; 1.5 ml/min으로 결정되었으며, 이 조건에서 ARP공정 수행 결과 섬유소 함량; 72.33%, 리그닌함량; 11.16%, 그리고 효소의 가수분해도 ; 92.13%의 만족할 만한 결과를 얻어, ARP공정이 매우 효과적인 전처리 방법이라고 결론지을 수 있었다.
ARP(Ammonia Recycled Percolation) process was developed as the effective treatment process for removing the lignin from cellulose and hemicellulose of lignocellulosic biomass. In this article, as the basic study of ARP, the properties and the optimum conditions of process were estiblished, and then the overall efficiency of ARP was investigated. The important independent variables for ARP process were selected as ammonia concentration, percolation temperature, and flow rate of solvent. The percolation condition for maximizing the content of cellulose, the enzymatic digestibility, the remaining percent weight, and the lignin removal was optimized using the RSM (Response Surface Methodology). The determined optimum condition is ammonia concentration ; 17.5%, percolation temperature ; 185℃, and flow rate of solvent ; 1.5 ml/min. The satisfying results were obtained under this optimized condition, that is, the results are as follows : cellulose content ; 72.33%, lignin content ; 11.16%, and enzymatic digestibility ; 92.13%.
[References]
  1. Galbe M, Zacchi G, Biotechnol. Bioeng. Symp., 17, 97, 1986
  2. Lee JS, Lee JP, Cho JK, Lee YW, Hong JJ, Park SC, HWAHAK KONGHAK, 32(1), 36, 1994
  3. Koullas DP, Christakopolsous P, Kekos D, Macris BJ, Koukios EG, Biotechnol. Bioeng., 36, 113, 1992
  4. Mackie KL, Brownell HH, West KL, Saddler JN, J. Wood Chem. Technol., 5(3), 405, 1985
  5. Wayman M, Parekh S, Chornet E, Overend RP, Biotechnol. Lett., 8(10), 749, 1986
  6. Park JK, Phillips JA, Chem. Eng. Commun., 65, 187, 1986
  7. Gould JM, Biotechnol. Bioeng., 26, 46, 1984
  8. Chen SL, Sunol AK, AIChE For. Prod. Div. Sess., 33
  9. Cahela DR, Lee YY, Chambers RP, Biotechnol. Bioeng., 25, 3, 1983
  10. Lee YY, Lin CM, Johnson T, Chambers RP, Biotechnol. Bioeng. Symp., 8, 75, 1979
  11. Lee YY, McCaskey TA, Proc. Tappi R. D., 317, 1983
  12. Grohmann K, Torget R, Himmel M, Biotechnol. Bioeng., 15, 59, 1985
  13. Kim SB, Lee YY, Biotechnol. Bioeng. Symp., 17, 71, 1993
  14. Dale BE, Moreira MJ, Biotechnol. Bioeng. Symp., 12, 31, 1982
  15. Yoon HH, Wu ZW, Lee YY, Appl. Biochem. Biotechnol., 51-52, 5, 1995
  16. Jangali NR, Chem. Abstr., 98(14), 109, 1983
  17. Han YW, Adv. Appl. Microbiol., 23, 119, 1978
  18. Wang PY, Bolker HI, Purves CB, TAPPI J., 50, 123, 1967
  19. Ghose TK, Pure Appl. Chem., 59, 257, 1987
  20. Grohmann K, Torget R, Himmel M, Biotechnol. Bioeng. Symp., 17, 135, 1986
  21. Grohmann K, Himmel M, Rivard C, Tucker M, Baker J, Torget R, Graboski M, Biotechnol. Bioeng. Symp., 14, 139, 1984
  22. Ehrman T, Magill K, NREL-CAT Standard Procedure No. 001-005, 1992
  23. George PP, Tammy KS, Sherry LS, NREL Chemical Analysis & Testing Standard Procedure #008, 1993
  24. Montgomery DC, "Design and Analysis of Experiments," 4th ed., John Wiley & Sons, Inc., New York, NY, 1996
  25. Oh KK, Kim SW, Jeong YS, Hong SI, HWAHAK KONGHAK, 34(4), 418, 1996