Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.36, No.5, 751-758, 1998
Perovskite(La0.8Sr0.2 CuO3) 전극을 이용한 이산화탄소의 전기화학적 환원에 관한 연구
A Study on Electrochemical Reduction of CO2 by using the Perovskite Electrode
전기전도도가 높고 산화환원력이 우수한 Cu계 perovskite(La0.8Sr0.2 CuO3) 전극을 이용하여 이산화탄소의 전기화학적 환원반응 특성을 연구하였다. 이산화탄소를 KOH전해액에 용해하여 전기화학적 환원반응(전위 범위 : -2.0- -3.OV vs. Ag/AgCl)을 수행한 결과, 알코올(메탄올, 에탄올, 그리고 프로판올)과 아세트알데히드 등이 얻어졌다. 생성물의 전체 효율은 인가전압-2.OV에서 최적이었고, 메탄올을 제외한 생성물의효율은 반응온도에 반비례하였다. 반응온도에 따른생성물의 효율은 5℃에서 아세트알데히드와 에탄올, 10℃에서는 프로판올, 그리고 30℃에서는 메탄올이 최대값을 보였다. 또한 효율에 근거한 이산화탄소 환원 메커니즘에 따르면 에탄올과 아세트알데히드는 중간체 역할을 하는 것으로 판단되었다.
By using the electrode made of Cu based perovskite which has high conductivity and excellent redox power, the characteristics of electrochemical reduction of carbondioxide were studied. After carbondioxide is dissolved in the KOH electrolyte and carried out electrochemical reduction at the negative potential (range : -2.0--3.0 V vs. Ag/AgCl), alcohols(methanol, ethanol, and propanol) and acetaldehyde are produced. The total efficiency of products is optimum at -2.0V vs. Ag/AgCl and with the exception of methanol, the efficiency of products is inversely proportional to the reaction temperature. The optimum reaction temperatures at which the highest efficiency could be got for individual products are 5℃ for acetaldehyde and ethanol, 10℃ for propanol and 30℃ for methanol. And according to the tentative mechanism for the reduction of carbondioxide on the basis of these experimental efficiencies of products, ethanol and acetaldehyde were intermediates in this electrochemical reaction.
[References]
  1. Sullivan BP, Krist K, Guard HE, "Electrochemical and Electrocatalytic Reactions of Carbon Dioxide," Elsevier, Amsterdam, Netherlands, 1993
  2. Keeling L, Bacastow RB, Carter AF, Peper SC, Whorf TP, Heimann M, Mook WG, Roeloffzen H, Geophys. Monograph, 55, 165, 1989
  3. Stephen CP, Charles DK, Proceedings International Symposium '90 on Global Environment and Energy Issues, L1-3, Fukuoka, Nov. 19-21, Japan, 1990
  4. Park SE, Chang JS, Lee KW, Chem. Ind. Technol., 12(1), 17, 1994
  5. Park JH, Moon HK, Lee SI, Wee JH, Lim JH, Lee JK, Chun HS, Theor. Appl. Chem. Eng., 2(2), 2035, 1996
  6. Young JG, Moon JY, Jung SM, Jung OW, Park DW, Lee JK, Theor. Appl. Chem. Eng., 2(1), 1301, 1996
  7. Lee SY, Lee SI, Lim JH, Lee JK, Chun HS, Theor. Appl. Chem. Eng., 1(2), 797, 1995
  8. Cook RL, Macduff RC, Sammells AF, J. Electrochem. Soc., 136(7), 1982, 1989
  9. Hori Y, Murata A, Ito S, Chem. Lett., 1567, 1989
  10. Hori Y, Murata A, Ito S, Chem. Lett., 1231, 1990
  11. Noda H, Ikeda S, Oda Y, Ito K, Chem. Lett., 289, 1989
  12. Hori Y, Murata A, Electrochim. Acta, 35(11), 1777, 1990
  13. Frese KW, J. Electrochem. Soc., 138(11), 3338, 1991
  14. Frese KW, Canfield D, J. Electrochem. Soc., 131(11), 2518, 1984
  15. Furuya N, J. Electroanal. Chem., 217, 181, 1989
  16. DeWulf DW, Jin T, Bard AJ, J. Electrochem. Soc., 136(6), 1686, 1989
  17. Lim JH, Chun HS, HWAHAK KONGHAK, 35(1), 1, 1997
  18. Kim JJ, Chung SJ, Choi JW, Lee WY, HWAHAK KONGHAK, 20(4), 245, 1982
  19. Kim JB, Lee WY, Rhee HK, Lee HI, HWAHAK KONGHAK, 26(5), 535, 1988
  20. Kim YH, Rhee CK, Lee WY, Rhee HK, Lee HI, HWAHAK KONGHAK, 29(5), 596, 1991
  21. Lee BY, Lee CW, Bae JH, Shin BS, Choung SJ, HWAHAK KONGHAK, 35(4), 565, 1997
  22. Bandi A, J. Electrochem. Soc., 137, 2157, 1990
  23. Schwartz M, Cook RL, Kehoe VM, MacDuff RC, Patel J, Sammells AF, J. Electrochem. Soc., 140(3), 614, 1993
  24. Brinker CJ, Scherer GW, "Sol-Gel Science," Academic Press, 1990
  25. Hori Y, Murata A, Takahashi R, J. Chem. Soc.-Faraday Trans., 85(8), 2309, 1989
  26. Kim MK, "Aspects of Provskite-type Oxides as Functional Material,", 1991
  27. Obayashi H, Kudo T, Gejo T, Jpn. J. Appl. Phys., 13(1), 1, 1974
  28. Jun HJ, "Catalysis an Introduction," Hanlimwon, Seoul, 1992
  29. Tejuca LG, Fierro JLG, "Properties and Applications of Perovskite-type Oxides," Marcel Dekker, New York, 1993
  30. Yoshimura T, Maruyama T, Atake T, Saito T, Solid State Ion., 37, 289, 1990
  31. Yoon HS, Hwang UY, Park HS, HWAHAK KONGHAK, 34(5), 556, 1996
  32. Park JH, Oh BH, Lim JH, Lee JK, Chun HS, Theor. Appl. Chem. Eng., 4, 1629, 1998
  33. Hara K, Tsuneto A, Kudo A, Sakata T, J. Electrochem. Soc., 141(8), 2097, 1994
  34. Kyriacou G, Anagnostopoulos A, J. Electroanal. Chem., 322, 233, 1992
  35. Cook RL, Macduff RC, Sammells AF, J. Electrochem. Soc., 135(6), 1320, 1989
  36. Levenspiel O, "Chemical Reaction Engineering," 2nd ed., John Wiley & Sons, New York, 1972