Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.36, No.5, 726-731, 1998
탄산칼륨 수용액 액막을 통한 이산화탄소의 촉진수송에 미치는 온도와 수송담체 농도의 영향
Effect of Temperature and Carrier Concentration on a Facilitated Transport of CO2 Across a Liquid Membrane of Potassium Carbonate Aqueous Solution
액막내에서 이산화탄소의 투과 거동을 예측하기 위하여 액막으로서 탄산칼륨 수용액을 선정하여 액막내의 이산화탄소와 관련된 가역반응을 고려한 시스템 지배방정식의 모델해석을 수행하였다. 모델해석에 사용된 반응속도상수, 평형상수, 용해도 그리고 확산계수를 탄산이온의 농도와 온도의 함수로 나타내었으며, 문헌값을 통하여 특정조건에서의 예측값을 확인하였다. 액막에서 이산화탄소의 투과에 영향을 미치는 중요한 인자들인 액막의 두께, 이산화탄소의 부분압력, 수송담체의 농도, 그리고 시스템의 온도를 실행 변수로 하여 이산화탄소의 투과속도를 예측할 수 있었다. 각각의 경우에 대하여 반응에 의한 이산화탄소의 투과속도 증가를 전체 이산화탄소의 투과속도와 촉진인자로 표현할 수 있었으며, 탄산칼륨 수용액내에서의 반응에 의하여 이산화탄소의 투과속도가 상당히 증가함을 알 수 있었다. 또한 온도가 증가함에 따라 전반적으로 투과속도와 함께 촉진인자가 증가함을 알 수 있었으며, 본 연구를 통해 액막에서의 이산화탄소 투과에 대한 수송담체의 농도와 온도를 포함한 효율적인 운전조건들을 제시할 수 있었다.
Model analysis was carried out using the system controlling equations which include the reversible reactions of carbon dioxide with potassium carbonate to predict the permeation behavior of carbon dioxide in a potassium carbonate liquid membrane. The physicochemical properties of reaction rate constants, equilibrium constants, solubility and diffusion coefficient were represented as a function of the concentration of carbonate ion and the temperature ; the calculated solubility and the predicted diffusion coefficient were found to be identical to those published data. The permeation rates could be successfully predicted with several important parameters : the thickness of liquid membrane, the partial pressure of carbon dioxide, the concentration of carrier and the temperature. The increment of the permeation rate was represented in terms of the facilitation factor as a function of carrier concentration. It was found that the permeation rate of carbon dioxide increases significantly as the concentration of carrier increases. The facilitation factor considerably increases together with the permeation rate as the temperature increases. The effective operating conditions could be obtained through this model analysis for the permeation rate as well as the facilitation factor of carbon dioxide across the liquid membrane.
[References]
  1. Meldon JH, Stroeve P, Gregoire CE, Chem. Eng. Sci., 16, 263, 1982
  2. Otto NC, Quinn JA, Chem. Eng. Sci., 26, 949, 1971
  3. Suchdeo SR, Schultz JS, Chem. Eng. Sci., 29, 13, 1974
  4. Danckwerts PV, Sharma MM, Chem. Eng., 244, 1966
  5. Suchdeo SR, Schultz JS, Chem. Eng. Prog. Symp. Ser., 67(114), 165, 1971
  6. Smith KA, Meldon JH, Colton CK, AIChE J., 19, 102, 1973
  7. Jung YW, Ihm SK, HWAHAK KONGHAK, 20(5), 365, 1982
  8. Chee YC, Jung YW, Ihm SK, HWAHAK KONGHAK, 24(3), 227, 1986
  9. Noble RD, Way JD, ACS Symposium Series, American Chemical Society, 1987
  10. Astarita G, Savage DW, Bisio A, "Gas Treating with Chemical Solvents," John Wiley & Sons, New York, 1983
  11. Kloosterman EG, de Vries SM, Kalsbeek H, Drinkenburg B, Ind. Eng. Chem. Res., 26, 2216, 1987
  12. Weast RC, "CRC Handbook of Chemistry and Physics," 65th ed., CRC Press. Inc., Boca Raton, 1984