Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.36, No.5, 713-719, 1998
고분자 정공 전달체로 측쇄에 Triphenylamine기를 갖는 폴리메타크릴아미드 유도체의 합성과 광·전기적 특성에 관한 연구
Studies on the Synthesis of Polymethacrylamide Derivative with a Triphenylamine Moiety in the Side Chain as a Polymer Hole Transport Material and Its Optoelectrical Characteristics
측쇄에 triphenylamine moiety를 갖는polymethacrylamide유도체를 합성하여 고분타정공 전달체로의 활용 가능성에 관해 검토하였다. 제조한 고분자의 열 및 광·전기적 특성을 TGA, DSC, 순환전압-전류법과 광발광 측정으로조사하였다. ITO/정공 전달체, polymethacr- ylamide 유도체/발광체, Alq/MgAg로구성되는 유기 발광소자를 적층형 유기 박막을 사용하여 제작하였다. 고분자의 산화·환원 전위는 0.94V의 낮은 값을 가지며, 결과적으로 정공 주입에 필요한 에너지 장벽이 작기 때문에 발광소자는 뛰어난 내구성 및 낮은 구동전압을 나타내었다. 이와 같이 제작한 발광소자로부터 dc15V 구동전압에서 150cd/cm2의 녹색을 방출하는 것을 알 수 있었다.
We have synthesized polymethacrylamide derivative with a triphenylamine moiety in the side chain, and then examined the feasibility of its application as a polymer hole transport material. Thermal and optoelectrical characteristics of the polymer were investigated by TGA, DSC, cyclic voltammetry, and photoluminescence measurements. Organic electroluminescent devices consisting of ITO/ hole transport material, polymethacrylamide derivative/ luminescent material, Alq/MgAg were constructed using multilayer organic thin films. The redox potential of the polymer has a low value of 0.94V, which represented the high durability and low drive voltage of the device owing to the small energy barrier for hole injection. Green emission with a luminance of 150 cd/cm2 was achieved at a dc drive voltage of 15V.
[References]
  1. Braun D, Heeger AJ, Appl. Phys. Lett., 58, 1982, 1991
  2. Burn PL, Holmes AB, Kraft A, Bradley DDC, Brown AR, Friend RH, Gymer RW, Nature, 47, 356, 1992
  3. Uchida M, Omori Y, Noguchi T, Onnishi T, Yoshino K, Jpn. J. Appl. Phys., 32, 921, 1993
  4. Burrows PE, Sapochak LS, McCarty DM, Forrest SR, Appl. Phys. Lett., 64, 2718, 1994
  5. Jordan RH, Dodabalapur A, Strukelj M, Miller TM, Appl. Phys. Lett., 68, 1192, 1996
  6. Tang CW, VanSlyke SA, Appl. Phys. Lett., 51(12), 913, 1987
  7. Aminaka E, Tsutsui T, Saito S, Synth. Met., 71, 2009, 1995
  8. Adachi C, Tsutsui T, Saito S, Appl. Phys. Lett., 56, 799, 1989
  9. Katsume T, Hiramoto M, Yokoyama M, Appl. Phys. Lett., 64, 2546, 1994
  10. Kido J, Nagai K, Ohashi Y, Chem. Lett. Jpn., 657, 1990
  11. Adachi C, Tsutsui T, Saito S, Appl. Phys. Lett., 56, 799, 1990
  12. Shirota Y, Kuwabara Y, Inada H, Wakimoto T, Nakada H, Yonemoto Y, Kawami S, Imai K, Appl. Phys. Lett., 65, 807, 1994
  13. Adachi C, Nagai K, Tamoto N, Appl. Phys. Lett., 66, 2679, 1995