Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.36, No.5, 674-681, 1998
S 단일 중합체로 구성된 연속상에서 AB블록 공중합체의 미셀거동에 관한 연구
Micellization Behavior of AB Block Copolymers in S Homopolymer Matrix
본 연구에서는 기존의 A-B 블록 공중합체와 A단일 중합체가 혼합된 계에서의 미셀 형성 에 관한 연구를 확장시켜, A-B 블록 공중합체와 화학적 구조가 다른 S 단일 중합체가 혼합된 계에서의 미셀을 비교 연구하였다. 전체 자유에너지를 미셀당 블록 공중합체의 갯수 P, 코로나에서 이중 블록 공중합체가 차지하는 분율η, 미셀 외부의 이중 블록 공중합체의 분율 φ1에 대하여 최소화하여, 임계 미셀 농도(CMC), 미셀의 크기, 미셀당 블록 공중합체의 갯수 등을 계산하였다. 단일 중합체 S사슬이 B블륵에 비하여 A블록과 더 친화력이 있는 용매의 경우에 대하여 계산하였는데, 전반적으로 임계 미셀 농도가 무열용액(athermal solution)의 경우에 비해 크게 감소함을 알 수 있었다. 단일 중합체 S사슬과 이중 블록 공중합체 A블록간의 상호작용 상수값을 증가시킴에 따라 미셀 중심부 크기는 커지는 반면, 코로나는 작아져 미셀크기는 거의 변함이 없었다. χAS=0인 무열용액 계에서는 B블록이 길어짐에 따라 미셀당 블록공중합체의 개수가 증가하여 미셀 중심부의 크기가 커지나, A블록을 크게 할 경우에는 중심부 크기가 오히려 감소하였다. 그러나 χAS를 조금만 증가시켜도 이 경향은 사라지고 미셀당 블록 공중합체의 갯수가 증가하게 됨을 확인할 수 있었다.
Present study extends the previous studies on the micelle formation in that A-B block copolymer is mixed with homopolymer S of which the chemical structure is different from that of either block. The total free energy is minimized with respect to aggregation number P, the fraction of block copolymer in corona region η and the fraction of block copoymer outside the micelle φ1, to obtain critical micelle concentration (CMC), micelle size and aggregation number. When homopolymer S is more selective to A block than B block in the A-B block copolymer, the CMC is remarkably decreased in comparison with the athermal case. As χAS is increased, the core size of micelle increases while the corona size decreases, thus the overall micelle size is almost constant. While the micelle core size increases with the increase of B block length due to the increase in aggregation number P and decreases with the increase of A block length for the athermal case, the slight increase in χAS causes the aggregation number P to be increased thus the micelle core size increases.
[References]
  1. Anastasiadis SH, Gancarz I, Koberstein JT, Macromolecules, 22, 1449, 1989
  2. Munch MR, Gast AP, Macromolecules, 21, 1366, 1988
  3. Linse P, J. Chem. Phys., 97, 13896, 1993
  4. Linse P, Macromolecules, 26, 4437, 1993
  5. Huter PN, Scheutjens JMHM, Hatton TA, Macromolecules, 26, 5030, 1993
  6. Huter PN, Scheutjens JMHM, Hatton TA, Macromolecules, 26, 5592, 1993
  7. Lent VB, Scheutjens JMHM, Macromolecules, 22, 1931, 1989
  8. Zhan YJ, Mattice WL, Macromolecules, 27(3), 683, 1994
  9. Zhan YJ, Mattice WL, Macromolecules, 27(3), 677, 1994
  10. Halperin A, Macromolecules, 20, 2943, 1987
  11. Daoud M, Cotton JP, J. Phys.(Les Ulis Fr.), 43, 531, 1982
  12. Leibler L, Orland H, Wheeler JC, J. Chem. Phys., 79, 3550, 1983
  13. Munch MR, Gast AP, Macromolecules, 21, 1360, 1988
  14. Whitmore MD, Noolandi J, Macromolecules, 18, 657, 1985
  15. Myers D, "Surfaces, Interfaces, and Colloids," VCH Publishers, Inc., 1991
  16. Rigby D, Roe RJ, Macromolecules, 17, 1778, 1984
  17. Rigby D, Roe RJ, Macromolecules, 19, 721, 1986
  18. Xu R, Hallett FR, Riess G, Croucher MD, Macromolecules, 24, 87, 1991
  19. Wilhelm M, Cheng-Le Z, Yongcai W, Renliang X, Mitchell AW, Jean-Luc M, Gerard R, Melvin DC, Macromolecules, 24, 1033, 1991
  20. Duhamel J, Yekta A, Ni S, Khaykin Y, Winnik MA, Macromolecules, 26, 6255, 1993
  21. Major MD, Torkelson JM, Brearley AM, Macromolecules, 23, 1700, 1990
  22. Mayes AM, Olvera de ra Cruz M, Macromolecules, 21, 2545, 1988