Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.36, No.4, 548-553, 1998
수두 바이러스의 인체 폐세포내 증식모델
Varicella-Zoster Virus Propagation Model in Human Lung Fibroblast Cells
수두 바이러스는 불안정한 바이러스로 알려져 있다. 수두 바이러스에 감염된 세포는 직접적으로 인접한 세포를 감염시키고, 세포와 밀접하게 결합(cell-associated)되어 있다. 수두 바이러스는 환경민감도가 높아서 실험할 때마다 실험결과가 달라질 수도 있다. 따라서 수두 바이러스의 정확한 수율을 예측하는 것이 어려우며 이러한 문제를 해결하기 위해 수두 바이러스 증식에 대한 이론적 모델이 필요하다. 수두 바이러스의 증식에 영항을 미치는 두 가지 중요한 변수는 정상 세포에 감염 세포를 접종하는 감염비(multiplicity of infection, MOI)와 감염 후 배양 시간이다. 본 연구에서는 수두 바이러스의 cell-to-cell 감염 특징을 사용하여 finite element method를 이용한 증식모델을 개발하였다. 감염세포가 이웃세포를 감염시키는데 걸리는 시간은 실험에 의해 8시간으로 결정하였고, 감염세포는 감염된 후 48시간 후에 감염능을 잃는 것으로 추정하였다. 본 연구에서 설정된 모델의 simulation 결과 감염비(MOI)가 증가할수록 감염속도는 빨라지며, mono-layer culture 경우 수두바이러스의 최대 수율은 감염비 1:10에서 얻을 수 있음을 확인할 수 있었다. 본 연구의 2차원적인 증식모델은 추후 실제 시스템에 더 가까운 3차원적 바이러스 증식모델 설정에도 응용될 수 있을 것이다.
Varicella-zoster virus(VZV) is known to be an unstable virus. Infectious cells infect directly adjacent cells and VZV has the strongly cell-associated nature. Kinetics analysis of VZV proliferation shows different experimental values due to the environmental sensitivity of VZV. So the prediction of exact yield of VZV is difficult. In order to solve this problem, a theoretical model is required to estimate more precise yield of VZV. The yield of VZV is related to multiplicity of infection(MOI) and time of culture in the proliferation of VZV. A model was developed by using the finite element method considering the cell-to-cell infection characteristic of VZV. The spreading time of plaque forming cells to the neighboring cells was determined as 8 hours by several experiments. It was assumed that plaque forming cells lost infectivity within 48 hours after it was infected. From the simulation of two-dimensional model used in this work, it was confirmed that the maximum yield of VZV could be obtained at the MOI of 1:10, which corresponded with experimental results. The VZV propagation model can be extended to the future 3-dimensional model which is closer to real VZV propagation.
[References]
  1. Sim TS, Kgcc News, 13(2), 79, 1985
  2. J. Kor. Soc. Virology: "Essential Virology," Suhheoung Pulish, 122, 1992
  3. Michiaki T, Proc. Soc. Exp. Biol. Med., 83, 340, 1953
  4. Weller TH, Witton HM, Bell EJ, J. Exp. Med., 108, 843, 1958
  5. Caunt AE, Lancet, 2, 982, 1963
  6. Taylor-Robinson D, J. Exp. Pathol., 40, 521, 1959
  7. Schmidt NJ, Lennette EH, Infection Immunity, 14, 703, 1976
  8. Grose C, Brunell PA, Infection Immunity, 19, 199, 1978
  9. Gold E, J. Immunology, 95, 683, 1965
  10. Takahashi M, Adv. Virus Res., 28, 286, 1983
  11. Rapp F, Vanderslice D, Virology, 22, 321, 1964
  12. Cook ML, Stevens JG, J. Ultrastructure Res., 32, 334, 1970
  13. Yamanishi K, Matsunaga Y, Ogino T, Takahashi M, Takamizawa A, Infection Immunity, 28, 536, 1980
  14. Kim WB, Park JK, Choi WS, Kim SO, Chung YJ, Kim HS, Kim IH, Korean J. Biotechnol. Bioeng., 11(2), 254, 1996
  15. Kelly KF, Hu WS, Biotechnol. Bioeng., 32, 1061, 1988
  16. Lim JHF, Davies GA, Biotechnol. Bioeng., 36, 547, 1990
  17. Zygourakis K, Markenscoff P, Bizios R, Biotechnol. Bioeng., 38, 459, 1991
  18. Zygourakis K, Markenscoff P, Bizios R, Biotechnol. Bioeng., 38, 471, 1991
  19. Forestell SP, Milne BJ, Kalogerakis N, Behie LA, Chem. Eng. Sci., 47, 2381, 1992
  20. Ruaan RC, Tsai GH, Tsao GT, Biotechnol. Bioeng., 41, 380, 1993