Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.36, No.3, 453-459, 1998
Polytetrafluoroethylene과 Polysulfone막흡수를 이용한 이산화탄소의 분리
Separation of Carbon Dioxide using Polytetrafluoroethylene and Polysulfone Membrane Contactors
Polytetrafluoroethylene(PTFE)으로 제조된 막흡수기를 이용하여 질소와 이산화탄소의 혼합기체로부터 이산화탄소를 분리하였다. 이산화탄소를 선택적으로 분리하는 데 사용한 흡수제로는 증류수와 monoethanol amine(MEA) 수용액을 이용하였다. 막흡수 과정에서 막 재질의 친수성 효과를 살펴보기 위하여 비교적 친수성이 강한 polysulfone(PS)막을 이용한 이산화탄소의 분리를 병행하여 수행하였다. 실험결과에 의하면 흡수제가 막의 기공을 적시는 것을 억제할 수 있는 소수성 재질인 PTFE로 만들어진 막이 친수성인 PS막보다 우수한 분리 성능을 나타내었으며 화학흡수제인 MEA자 물리흡수제인 증류수보다 우수한 분리성능을 보였다. 또한, 흡수제의 유량이 클수록 흡수된 이산화탄소의 농도의 검소하지만 전체적인 이산화탄소의 제거율은 증가하는 것으로 밝혀졌으며 제거율이 포화점에 이르는 흡수제의 유량이 존재함을 확인하였다. 끝으로, 모듈에서의 전달철상을 모사하여 얻어진 편미분방정식을 유한차분법을 이용하여 수치적으로 해석하였으며 수치해석결과와 실험결과가 비교적 잘 일치함을 보였다.
Microporous membrane absorbers were used for separation of carbon dioxide and nitrogen mixture. The membrane was made of either polysulfone(PS) or polytetrafluoroethylene(PTFE) and the absorbents were distilled water and monoetanol amine(MEA)/water solution. The results showed that the hydrophilicity of the membrane materials was a very important factor in determining the separation efficiency and rather hydrophobic PTFE membrane exhibited better performance due to its hindrance to the absorbent wettability. Considering the separation efficiency alone, the chemical absorbent MEA was better than the physical absorbent water. Among the practically important features of the present results was that the removal rate of carbon dioxide was increased with the volume flow rate of an absorbent and saturated at a certain value. Finally, the theoretical predictions by the model for mass transport through the membrane absorber agreed reasonably well with the experimental results.
[References]
  1. Cooney DO, Jackson CC, Chem. Eng. Commun., 79, 153, 1989
  2. Paul J, Pradier CM, "Carbon Dioxide Chemistry: Environmental Issues," Athenaeum Press Ltd, U.K., 1994
  3. Karoor S, Sirkar KK, Ind. Eng. Chem. Res., 32, 674, 1993
  4. Sirkar KK, ACS Symp. Ser., 642, 222, 1996
  5. Ahmed T, Semmens MJ, J. Membr. Sci., 69, 11, 1996
  6. Papadopoulos T, Sirkar KK, J. Membr. Sci., 94, 163, 1994
  7. Majumdar S, Guha AK, Sirkar KK, AIChE J., 34, 1135, 1988
  8. Ghosh AC, Borthakur S, Dutta NN, J. Membr. Sci., 96(3), 183, 1994
  9. Guha AK, Majumdar S, Sirkar KK, J. Membr. Sci., 62, 293, 1991
  10. Guha AK, Majumdar S, Sirkar KK, Ind. Eng. Chem. Res., 31, 593, 1992
  11. Majumdar S, Sengupta A, Cha JS, Sirkar KK, Ind. Eng. Chem. Res., 33(3), 667, 1994
  12. Park SW, Suh DS, Hwang KS, Kumazawa H, Korean J. Chem. Eng., 14(4), 285, 1997
  13. Rangwala HA, J. Membr. Sci., 112(2), 229, 1996
  14. Karoor S, Ph.D. Dissertation, Stevens Institute of Technology, U.S.A., 1992
  15. Happel J, AIChE J., 5(2), 174, 1959
  16. Bird RB, Stuwart WE, Lightfoot EN, "Transport Phenomena," John Wiley & Sons, Inc., U.S.A., 1960
  17. Burden RL, Faires JD, "Numerical Analysis," PWS Publishing Com., U.S.A., 1993
  18. Kim BS, Harriott P, J. Colloid Interface Sci., 115, 1, 1987
  19. Geankoplis CJ, "Mass Transport Phenomena," Holt, Rinehart and Winston, Inc., N.Y., U.S.A., 1972
  20. Skelland AHP, "Diffusional Mass Transfer," John Wiley & Sons, Inc., U.S.A., 1974