Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.36, No.3, 422-428, 1998
Multi-period 조업을 고려한 유틸리티 플랜트의 최적화
Optimization of A Utility Plant for Multi-period Operations
유틸리티 플랜트는 대규모 정유 및 석유화학 공장에 설치되어 있는 핵심 단위 공장으로 주 공장에서 필요로 하는 스팀과 전력을 생산하여 공급하는 기능을 수행하고 있다. 수시로 변하는 시장 상황과 주 공장의 유틸리티 수요에 능동적으로 대처하며 동시에 에너지 비용을 최소화하기 위해서는 조업 조건을 시간에 따라 최적으로 결정해주는 실시간 최적화가 필요하다. 본 연구에서는 최적화 변수 선정이 자유로운 열린형식(open form)으로 각 단위 공정모델과 전력 가격의 변화를 반영할 수 있는 최적화 모델을 개발하였다, 열린형식 모델과 비선형 최적화 기법을 이용한 유틸리티 플랜트 실시간 최적화 방법을 제시하였으며 사례연구를 통하여 본 논문에서 제시한 방법이 다양한 수요 패턴과 multi-period를 갖는 유틸리티 플랜트의 최적화에 적용될 수 있음을 확인하였다. 사례연구의 최적화 결과로부터 연료와 수전 전력 사용에 따른 운전 비용을 기존 조업 조건 대비 4%에서 8.9%까지 절감할 수 있음을 보였다.
A utility plant is one of key unit plants in large refinery and petrochemical plants that generates steam and electricity and supplies them to the main plants according to their utility demands. The dynamic market situation has led to the frequent changes of the demands for the steam and electricity. Consequently, the frequent demand changes have led to the frequent changes of the operation conditions of utility plant. This paper proposes a real-time optimization methodology that determines the optimal operation conditions that reduce the energy cost of the utility plant and satisfy the utility demands at the same time. We have developed a utility plant model in open form for its flexibility in selection of decision variables. The case studies have shown that the proposed methodology can be applied to the optimization of a utility plant that has a variety of demand patterns for multi-period operations and energy cost saving can be achieved by 4-8.9% compared with usual operation.
[References]
  1. Pilavakis PA, Perrin MA, Hydrocarb. Process., July, 89, 1983
  2. Nath R, Holliday JF, Mechanical Eng., Feb., 44, 1985
  3. Poje JB, Smart AM, Chem. Eng. Prog., May, 39, 1986
  4. Chou C, Shih Y, Ind. Eng. Chem. Res., 26, 1100, 1987
  5. Nishio M, Itoh J, Shiroko K, Umeda T, Ind. Eng. Chem. Process Des. Dev., 19, 306, 1980
  6. Nishio M, Koshijima I, Shiroko K, Umeda T, Ind. Eng. Chem. Process Des. Dev., 24, 19, 1985
  7. Boulilloud P, Hydrocarb. Process., Aug., 127, 1969
  8. Foster D, Proc. Instn. Mech. Engrs., 201(A3), 201, 1987
  9. Marechal FM, Kaitventzeff B, Comp. Oriented Proc. Eng., 185, 1991
  10. Petracci NC, Brignole EA, Eliceche AM, Comp. Oriented Proc. Eng., 387, 1991
  11. Takeshita T, Fujita K, Natori Y, IFAC Advanced Control of Chemical processes, Kyoto, Japan, 143, 1994
  12. Nath R, Libby DJ, Duhon HJ, Chem. Eng. Prog., 82, 31, 1986
  13. Papalexandri KP, Pistikopoulos EN, Kalitventzeff B, Dumont MN, Urmann K, Gorschluter J, Comput. Chem. Eng., 20(S), 763, 1996
  14. Lee SJ, Han C, ICASE Magazine, 3, 13, 1997
  15. Lee SJ, Lee MH, Chang KS, Han C, HWAHAK KONGHAK, 36(3), 415, 1998
  16. Lee SJ, M.S. Thesis, Pohang University of Science and Technology, Pohang, 1998
  17. Lee MH, Han C, Chang KS, Theor. Appl. Chem. Eng., 3, 257, 1997
  18. Tamhane AC, Mah RSH, Technometrics, 27, 409, 1985
  19. Lee MH, Lee SJ, Han CH, Chang KS, Kim SH, You SH, Comput. Chem. Eng., 22(S), 247, 1998
  20. Yoo YH, Yi HS, Yeo YK, Kim MK, Yang HS, Chung KP, Korean J. Chem. Eng., 13(4), 384, 1996