Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.36, No.3, 415-421, 1998
계층적 방법에 의한 유틸리티 플랜트 조업 최적화
Optimization of a Utility Plant Operation Based on a Hierarchical Method
유틸리티 플랜트는 대부분의 정유 및 석유화학 공장에 설치되어 공장에서 필요로 하는 스팀과 전력을 공급하는 역할을 하는 핵심 동정이다. 최근 에너지 비용 증가와 환경 오염에 대한 우려로 인해 유틸리티 플랜트의 에너지 소비 절감 및 운전 비용 절감이 학계와 산업계로부터 많은 관심을 받아 왔으며 이 결과 유틸리티 플랜트 운전을 최적화하기 위한 다양한 접근 방법들이 제시되었다. 본 논문에서는 유틸리티 플랜트 조업의 특성을 고려하여 전체시스템을 상부와 하부로 나누어 최적화하는 계층적 최적화 방법을 제시하고 이를 이용한 유틸리티 플랜트의 최적화를 수행하였다. 상부 단계에서는 전력 수배급을 포함한 유틸리티 분배 최적화를 통해 최적의 스팀 수배급을 결정한 후 이를 달성하기 위한 최적 스팀 생산 방법을 하부 단계의 보일러 부하 재분배를 통해 결정하였다. 물리, 화학적 현상과 실제 조업 데이터를 이용하여 단위 공정 모델들을 개발하였고, 전체 유틸리티 플랜트의 경비를 결정하는 주요 변수들을 최적화 변수로 선정하여, 계층적 최적화를 통해 운전 비용을 절감할 수 있는 최적 조업 조건을 결정하였다. 최적화 결과 스팀 분배 부분에서는 기존 공정 조업 대비 약 6.2%의 운전 비용을 절감할 수 있고 스팀 생산 부분에서 보일러 부하 재분배를 통하여 평균 보일러 효율을 0.3%에서 1.7%까지 향상시킬 수 있었다.
A utility plant is one of key unit plants in large scale refinery and petrochemical plants that supplies the steam and the electricity using fuel oil and gases. As the energy cost and the concern on the environmental pollution have been increasing, the energy saving and the operation optimization of the utility plant have received attention from both academia and industry. This paper proposes a hierarchical optimization method for the utility plant optimization that consists of top and bottom level optimization. At the upper level, the total utility plant including electricity supply and demand is optimized. At the lower level, the solution for the steam generation obtained from the top level is refined to achieve the optimal load allocation for the boilers. Various unit process models have been developed from the operation data and the material and energy balances. The key variables that mainly determine the operation cost for the utility plant have been selected and optimized. The optimization result has shown that the operation cost was reduced by 6.2% and the average efficiency of the boilers was improved by 0.3 to 1.7% through optimal boiler load allocation.
[References]
  1. Nishio M, Johnson AI, Chem. Eng. Prog., 73, 1977
  2. Arnstein A, O'Connell L, Hydrocarb. Process., 47, 88, 1968
  3. Slack John B, Hydrocarb. Process., March, 154, 1969
  4. Cho CH, Instrumentation Technol., Oct., 55, 1978
  5. Robnett JD, Chem. Eng. Prog., 75, 59, 1979
  6. Nishio M, shiroko K, Umeda T, Ind. Eng. Chem. Process Des. Dev., 21, 640, 1982
  7. Nishio M, koshijima I, Shiroko K, Umeda T, Ind. Eng. Chem. Process Des. Dev., 24, 19, 1985
  8. Boulilloud P, Hydrocarb. Process., Aug., 127, 1969
  9. Clark JK, helmick NE, Chem. Eng., March, 116, 1980
  10. Brooke A, Kendrick D, Meeraus A, "GAMS: A User's Guide, Release 2.25," The Scientific Press, 1992
  11. Ravi N, Holliday JF, Mechanical Eng., Feb., 44, 1985
  12. Marlin T, "Process Control," McGraw Hill, 1996
  13. Assad GD, Ph.D. Thesis, The University of Texas at Austin, 1993
  14. Lee GB, Ph.D. Thesis, Seoul National University, Seoul, 1997
  15. Chou CC, Shih YS, Ind. Eng. Chem. Res., 26, 1100, 1987
  16. Smith JM, Van Ness HC, "Introduction to Chemical Engineering Thermodynamics," McGraw Hill, Fourth Edition, 1987
  17. Yoo YH, Yi HS, Yeo YK, Kim MK, Yang HS, Chung KP, Korean J. Chem. Eng., 13(4), 384, 1996