Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.36, No.3, 407-414, 1998
셀-튜브형태의 막모듈을 이용한 중금속 제거공정 모사연구
Performance Estimation of Tubular Supported Liquid Membrane for Heavy Metal Removal Processes
함침액막법(supported liquid membrane technique)은 수용액에 포함된 물질을 제거할 수 있는 에너지 절약형 기술로 알려져 있다. 본 연구에서는 셀-튜브형태의 막모듈을 이용하여 수용액 중의 중금속을 제거, 회수하는 공정에 대한 성능을 예측하고자 모델링 연구를 수행하였다. 본 모델링에서는 경계층에서의 물질전달저항, 계면에서의 금속 이온과 킬레이트 수송물질 간의 반응, 막내부에서 물질전달저항을 동시에 고려하였다. 공급용액의 pH를 일정하게 유지하면서 운전하는 경우, 병류와 향류 흐름에 대하여 해석적인 해를 구하였고, 공급용액에서 pH가 변하는 경우에 대한 수치해를 구하였다. 막모듈의 무차원 길이가 약 0.2보다 작을 때는 병류 또는 향류로 운전할 경우 공급용액 농도 감소속도가 큰 차이가 없었으나, 막모듈의 길이가 이보다 길어지면서 향류로 운전될 경우 공급용액의 유출농도는 병류로 운전될 경우와는 달리 계속 감소하였다. 또, 반응에 의하여 생성되는 수용액 중의 수소이온농도의 증가는 공급용액에서 금속이온과 킬레이트제 간의 반응속도의 감소를 초래하여 수용액 중의 금속이온의 제거속도가 상당히 감소되었다. 따라서, 함침액막법을 이용한 셀-튜브형태의 막모듈의 운전시 공급용액의 pH를 일정하게 유지함으로써, 특정 금속이온에 대한 선택성이 우수하고, 빠른 제거 성능을 유지할 수 있음을 알 수 있었다. 또한, 막모듈의 성능에 영향을 미치는 주요인자 중 반응속도 상수 및 확산계수의 영향 등에 관하여 조사하였다. 이 결과는 킬레이팅 물질의 선택과, 모듈의 설계, 운전조건의 선택을 위한 기초자료로 사용될 수 있다.
Modeling studies are carried out to estimate the performance of the processes for the removal and recovery of heavy metal ions in aqueous solutions using the shell-and-tube type modules of supported liquid membranes. The mathematical model includes the boundary mass transfer resistance in the bulk solutions, the interfacial reaction between metal ions and impregnated chelating agents, and the diffusion in the membrane pores. Analytic solutions are obtained for coccurrent and countercurrent flows of feed and strip solutions respectively, when the hydrogen ion concentration(pH) is constant. The metal ion removal efficiency of the membrane modules is examined when the feed side pH is constant and when changed. Results show that the performances of cocurrent and countercurrent operations of feed and strip solutions have similar trends, when the dimensionless length is less than 0.2 under the given conditions. However, the effluent metal concentration for the countercurrent flow of feed decreases to zero value for the dimensionless membrane module length greater than 0.2, while the feed concentration approaches to equilibrium for the coccurrent flow. It is also found that the metal ion flux is decreased by slow interfacial reaction rate which results from decreasing pH of the feed when the feed is operated without pH adjustment. The selectivity and removal rate of the metal ion could be increased by constant pH operation in the feed side. The effects of interfacial reaction rate constants and diffusivities of metal-complex ions on the performance of membrane modules are studied. The results would provide a basis for the design and operation of tubular supported liquid membrane modules to select chelating agents and operation conditions.
[References]
  1. Park SW, Kaseger CF, Moon JB, Kim JH, Korean J. Chem. Eng., 13(6), 596, 1996
  2. Dansei PR, Horwitz EP, Vandegrift GF, Sep. Sci. Technol., 16, 201, 1981
  3. Tanigaki M, Shiode T, Ueda M, Eguchi W, Sep. Sci. Technol., 23, 1145, 1988
  4. Kim J, Stroeve P, Chem. Eng. Sci., 44, 1101, 1989
  5. Prasad R, Sirkar KK, "Membrane-based Solvent Extraction," Membrane Handbook, Ho, W.S.W. and Sirkar, K.K., Eds., Van Nostrand Reinhold, New York, 727, 1992
  6. Yi J, Tavlarides LL, AIChE J., 38, 1957, 1992
  7. Guha AK, Yun CH, Basu R, Sirkar KK, AIChE J., 40(7), 1223, 1994
  8. Yi J, Korean J. Chem. Eng., 12(3), 391, 1995
  9. Lee H, Evans DF, Cussler EL, AIChE J., 24, 860, 1978
  10. Kubota F, Goto M, Nakashio F, Hano T, Sep. Sci. Technol., 30(5), 777, 1995
  11. Yoshizuka K, Yasukawa R, Koba M, Inoue K, J. Chem. Eng. Jpn., 28(1), 59, 1995
  12. Yun CH, Pradad R, Guha AK, Sirkar KK, Ind. Eng. Chem. Res., 32, 1186, 1993
  13. Kataoka T, Nishiki T, Muto A, Kato D, Sep. Sci. Technol., 30(4), 621, 1995
  14. Juang TS, Lo RH, Ind. Eng. Chem. Res., 33(4), 1011, 1994
  15. Mohapatra R, Kanungo SB, Sarama PVRB, Sep. Sci. Technol., 27, 765, 1992
  16. Yi JH, Tavlarides LL, AIChE J., 41(6), 1403, 1995
  17. Juang R, Liang J, Chem. Eng. Commun., 126, 13, 1993
  18. Saito T, Sep. Sci. Technol., 29(10), 1335, 1994
  19. Dahuron L, Cussler EL, AIChE J., 34, 130, 1988
  20. Paunovic RN, Zavargo ZZ, Tekic MN, Chem. Eng. Sci., 48, 1069, 1993
  21. Uriaga AM, Irabin JA, AIChE J., 39, 521, 1993
  22. Juhasz NM, Deen WM, Ind. Eng. Chem. Res., 30, 556, 1991
  23. Davis ME, "Numerical Methods and Modeling for Chemical Engineers," John Wiley & Sons, NY, 1983
  24. Chung CB, Korean J. Chem. Eng., 8(4), 240, 1991
  25. Choi KH, Lee SJ, Shul YG, Lee TH, HWAHAK KONGHAK, 34(2), 171, 1996