Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.36, No.3, 387-392, 1998
활성탄소섬유를 이용한 고분자 전해질형 연료전지 전극의 제조
Fabrication of the Electrode for Proton Exchange Membrane Fuel Cell by Using Activated Carbon Fiber
미세기공이 발달된 활성탄소섬유를 카본블랙에 혼합하여 고분자 전해질형 연료전지용 전극을 제조하고 그 성능을 단위전지 실험으로 측정하였으며, 기공구조와 백금분산율을 측정하여 이를 전지성능 실험결과와 비교하였다. 실험결과 활성탄소섬유의 사용은 전극의 구조를 개선시키고 백금분산율을 증가시킴으로써 연료전지의 성능을 향상시켰다. 활성탄소섬유의 질량비가 30℃인 전극이 가장 높은 단위전지의 성능과 백금분산율 그리고 가장 낮은 전하전달 저항을 보였다. Brushing 법, rolling 법 등 전극제조방법, 백금함침 등 전극재료의 제조순서, 그리고 전극의 두께 등이 단위전지의 성능에 주는 영향을 분석하였다.
The electrodes for proton exchange membrane fuel cell were prepared by mixing carbon black with activated carbon fiber which has well-developed micropore and the performances of electrodes were observed in a unit cell. The performances were compared with pore structure, dispersion of platinum and preparation procedure of electrodes. The optimal mixing ratio showing the highest single cell performance was 30wt% ACF to 70wt% carbon black. This ratio could be directly related with the highest dispersion of platinum and the lowest charge transfer resistance.
[References]
  1. Kordesch K, Simader G, "Fuel Cells and Their Application," VCH, Weinheim, 1996
  2. Hirschenhofer JH, Stauffer DB, Engleman RR, "Fuel Cell Handbook, Rev. 3," DOE/METC-94/1006, U.S. DOE, 1994
  3. Fritts SD, Gopal R, J. Electrochem. Soc., 140, 3337, 1993
  4. Statti P, Poltarzewski Z, Alderucci V, Maggio G, Giordano N, Int. J. Hydrog. Energy, 19, 523, 1994
  5. Appleby AJ, J. Power Sources, 37, 223, 1992
  6. Srinivasan S, Velev OA, Parthasarathy A, Manko DJ, Appleby AJ, J. Power Sources, 36, 299, 1991
  7. Scherer GG, Ber. Bunsen-Ges. Phys. Chem., 94, 1008, 1990
  8. Eisman GA, J. Power Sources, 29, 389, 1990
  9. Appleby AJ, Proc. of Fuel Cell for Traction Applications, Stockholom, 1994
  10. Dhar HP, J. Appl. Electrochem., 23, 32, 1993
  11. Kunz HR, Gruver GA, J. Electrochem. Soc., 122, 1279, 1975
  12. Holze R, Vielstich W, J. Electrochimica Acta, 29, 607, 1984
  13. Stonehart P, Ross PN, Catal. Rev.-Sci. Eng., 12, 1, 1975
  14. Jalan VM, Bushnell CL, U.S. Patent, 4,316,059
  15. Lee SJ, Kim DK, Shin CS, Lee TH, Energy Engg. J., 4, 309, 1995
  16. Lee SJ, Choi KH, Lee TH, Cho WI, Rho YW, Kho YT, HWAHAK KONGHAK, 34(1), 105, 1996
  17. Lee SJ, Choi KH, Lee TH, Cho WI, Rho YW, Kho YT, HWAHAK KONGHAK, 34(2), 188, 1996