Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.36, No.2, 314-328, 1998
혼합용매/Poly(vinylchloride)계의 팽윤평형에 대한 UNIFAC 모델 적용
Application of UNIFAC Model for Swelling Equilibria of Mixed Solvent/Poly(vinylchloride) Systems
가교결합구조를 갖는 poly(vinylchloride)를 포함한 solvent(1)/solvent(2)/PVC(3)의 팽윤평형을 측정하기 위하여 PVC [poly(vinylchloride)]는 가교결합된 상태로 사용하였고, 유기용매는 acetone, trichloroethylene, ethanol 등의 3종류를 선택하여 2성분계의 acetone(1)/PVC(2), trichloroethylene(1)/PVC(2), ethanol(1)/PVC(2)계와 3성분계인 acetone(1)/trichloroethylene(2)/PVC(3), acetone(1)/ethanol(2)/PVC(3)계에 대하여 온도영역 298.15-318.15 K 범위에서 팽윤평형실험이 측정되었다. 측정된 팽윤데이터로부터 혼합용매계인 acetone(1)/trichloroethylene(2)/PVC(3)인 경우 acetone의 함량이 증가할수록 가교결합된 PVC의 팽윤비가 증가되다 감소하는 결과로 나타났고, acetone(1)/ethanol(2)/PVC(3)인 경우는 acetone의 함량이 증가함에 따라 팽윤비는 계속 증가하는 결과로 나타났다. 이로부터 acetone이 팽윤촉진제(good solvent)로 작용하고, trichloroethylene이나 ethanol은 팽윤억제제(poor solvent)로 작용하는 결과로 나타났다. 또한 acetone(1)/trichloroethylene(2)/PVC(3), acetone(1)/ethanol(2)/PVC(3)계의 팽윤평형을 계산하기 위하여 혼합에너지항과 탄성변형에너지항의 합으로 된 팽윤평형이론에 의하여 혼합에너지항에 UNIFAC모델[1]을, 탄성변형에너지항은 Flory[2], James와 Guth[3], Wall과 White[4]모델을 적용하였다. 측정된 팽윤평형데이터는 팽윤평형모델에 상호연관되어 상호작용파라미터들과 가교결합된 PVC의 주쇄를 연결하는 사슬들의 평균분자량이 추산되어 제공되었다. 또한 계산된 각 성분의 부피분율은 실험치와 비교하여 거의 오차가 없는 범위에서 일치하였다.
The crosslinked PVC[poly(vinylchloride)]s were used to measure the swelling equilibria for solbent(1)/solvent(2)/PVC(3) systems. Trichloroethylene, acetone and ethanol were chosen as the organic solvent for swelling the crosslinked PVCs. The measurement of swelling equilibria was carried out within 298.15K to 318.15K for the binary acetone(1)/PVC(2), trichloroethylene(1)/PVC(2), and ethanol(1)/PVC(2) systems, the ternary acetone(1)/trichloroethylene(2)/PVC(3), acetone(1)/ethanol(2)/PVC(3) systems. The swelling ratios of PVC were decreased after the increase of theirs for the acetone(1)/trichloroethylene(2)/PVC(3) systems and continuously increased for the acetone(1)/ethanol(2)/PVC(3) systems according to a increase of the content of acetone in their systems from the measured swelling data. Their results described that the acetone had a role of the good solvent and the trichloroethylene or the ethanol did the poor solvent. The theory of swelling equilibria was used to calculate swelling equilibria of acetone(1)/trichloroethylene(2)/PVC(3) and acetone(1)/ethanol(2)/PVC(3) systems. It consisted of a mixing energy term and an elastic deformation energy term that described the changes of the chemical potentials of each term, and the UNIFAC was chosen for a mixing energy term and each expression equation of the Flory, James and Guth, and Wall and White done for a elastic deformation term. The experimental swelling equilibria data for the acetone(1)/trichloroethylene(2)/PVC(3) systems and acetone(1)/ethanol(2)/PVC(3) systems were correlated to estimate the interaction parameters and the average molecular weights of branch chains between the main chains of cross-linked PVCs, and to calculate the volume fractions of PVCs in swelling equilibria with the swelling models. As a result, the experimental data were almost agreed with the calculated values within the experimental errors.
[References]
  1. Fredenslund A, Gmehling J, Rasmussen P, "Vapor-Liquid Equilibria Using UNIFAC," Elsevier, Amsterdam, 1977
  2. Flory PJ, "Principles of Polymer Chemistry," Cornell University Press, Ithaca, NY, London, 1953
  3. James HM, Guth E, J. Chem. Phys., 11(10), 455, 1943
  4. Wall FT, White RA, Macromolecules, 7(6), 849, 1974
  5. Richards SL, "The Role of Polymer Permeability in the Control of Drug Releade,", "Polymer Permeability," Elsevier Applied Science Publishers: London and New York, 1985
  6. Ashley RJ, "Permeability and Plastics Packaging,", "Polymer Permeability," Elsevier Applied Science Publishers: London and New York, 1985
  7. Gee G, Herbert JBM, Roberts RC, Polymer, 6, 541, 1965
  8. Yen LY, Eichinger BE, J. Polym. Sci. B: Polym. Phys., 16, 117, 1978
  9. Yen LY, Eichinger BE, J. Polym. Sci. B: Polym. Phys., 16, 121, 1978
  10. Badiger MV, Lele AK, Kulkarm MG, Mashelkar RA, Ind. Eng. Chem. Res., 33, 2426, 1990
  11. Errede LA, J. Appl. Polym. Sci., 31, 1749, 1986
  12. Mark JE, J. Phys. Chem., 68(5), 1092, 1964
  13. Liu XX, Tong Z, Hu O, Macromolecules, 28(11), 3813, 1995
  14. Hooper HH, Baker JP, Blanch HW, Prausnitz JM, Macromolecules, 23, 1096, 1990
  15. Flory PJ, Rehner J, J. Chem. Phys., 11(11), 512, 1943
  16. Flory PJ, Rehner J, J. Chem. Phys., 11(11), 521, 1943
  17. Flory PJ, J. Chem. Phys., 10, 51, 1942
  18. Huggins HL, J. Chem. Phys., 46, 151, 1942
  19. McKenna GB, Flynm KM, Chem Y, Polymer, 31, 1937, 1990
  20. Guggenheim EA, Proc. R. Soc. London, A183, 213, 1994
  21. Panayiotou C, Vera JH, Fluid Phase Equilib., 5, 55, 1989
  22. Prange MM, Hooper HH, Prausnitz JM, AIChE J., 35(8), 803, 1989