Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.41, No.4, 542-548, 2003
전이금속 도핑에 따른 TiO2 광촉매의 특성분석 및 광분해 효과
Effects of Transition Metal Ion Doping on the Photocatalytic Reactivity and Physical Properties of TiO2
본 연구에서는 주기율표 그룹으로 나누어지는 Fe(3+), Co(2+), Ni(2+)와 Mo(5+), Nb(5+), W(6+) 각각을 TiO2에 도핑한 박막 필름의 광촉매 활성과 물성평가를 수행하여, 두 그룹간의 상관관계를 규명하고자 하였다. 제조한 시료의 광활성은 trichloroethylene(TCE)을 통하여 GC-ECD, FTIR 그리고 GC-MS를 사용하였으며, 물성측정은 XRD, SEM, UV-Vis, TG/DSC, FTIR 그리고 XPS로 수행하였다. 모든 시료는 아나타제 결정 구조로 확인되었으며, SEM 분석에 의해 약 20 nm의 두께로 코팅됨을 측정하였다. 활성비교 및 물성측정에서 두 그룹에 의한 일관된 경향이 나타났는데, Mo(5+), Nb(5+), W(6+)의 경우가 결정화도, UV 흡수율, TCE 분해율에서 Fe(3+), Co(2+), Ni(2+)의 경우보다 높게 나왔으며, 전자의 경우 XPS 분석에 의하여 다양한 산화상태가 나왔으나, 후자의 경우는 산화상태가 확인되지 않았다. 다양한 산화상태는 전자/정공 분리에 도움을 준 것으로 사료되며, 이외 모든 특성분석 값은 광화학적 활성에 도움을 주는 것으로 알려져 있는 것들이다. 전이금속 도핑의 경우 도핑 물질의 선택과 이를 통한 요구되는 물성 취득이 매우 중요한 역할 담당함을 입증하였다.
In this study, we investigate the physical properties and photocatalytic activities of TiO2 thin films doped with low valence (Fe(3+), Co(2+), and Ni(2+)) and high valence (Mo(5+), Nb(5+), and W(6+)) cations. Photocatalytic activity was measured with trichloroethylene (TCE) degradation, while films were characterized by XRD, SEM, UV-Vis, TG/DSC, FTIR, and XPS. All samples prepared were in anatase phase with 20 nm film thickness. As a result, there existed a consistency that crystallinity, UV absorption at 360 nm and TCE conversion were higher in case of high valence cations than in case of low valence cations. In addition, even though various oxidation states for Mo(5+), Nb(5+), and W(6+) were confirmed, those were not identified for Fe(3+), Co(2+), and Ni(2+) thin films. The presence of different oxidation states of dopants and a higher degree of crystallinity seems to be beneficial for retarding charge pair recombination processes in the TiO2 lattice.
[References]
  1. Ollis DF, Al-Ekabi H, Photocatalyzed Purification of Water and Air, Elsevier, Amsterdam, 1993
  2. Serpone N, Pelizzetti E, Photocatalysis (Fundamental and Applications), John Wiley & Sons, New York, 1989
  3. Hoffmann MR, Martin ST, Choi WY, Bahnemann DW, Chem. Rev., 95(1), 69, 1995
  4. Fox MA, Dulay MT, Chem. Rev., 93, 341, 1993
  5. Linsebigler AL, Lu GQ, Yates JT, Chem. Rev., 95(3), 735, 1995
  6. Bickley RI, Gonzallez-Carreno T, Palmisano L, Mater. Chem. Phys., 29, 475, 1991
  7. Bonamali P, Tomohiro H, Kouichi G, Gyoichi N, J. Mol. Catal. A-Chem., 169, 147, 2001
  8. Brinker CJ, Scherer GW, Sol-Gel Science, The Physics and Chemistry of Sol-Gel Processing, John Wiley & Sons, 1990
  9. Pecchi G, Reyes P, Sanhueza PJ, Chemosphere, 43, 141, 2001
  10. Gao Y, Thin Solid Films, 346(1-2), 73, 1999
  11. Yu J, Zhao X, Zhao Q, Mater. Chem. Phys., 69, 25, 2001
  12. Xie HQ, Zhang QH, Xi TG, Wang JC, Liu Y, Thermochim. Acta, 381(1), 45, 2002
  13. Qin D, Chang W, Zhou J, Chen Y, Thermochim. Acta, 236, 205, 1994
  14. Hariaznov O, Harizanova A, Sol. Energy Mater. Sol. Cells, 63, 185, 2000
  15. Music S, Gotic M, Ivanda M, Povovic S, Turkocvic A, Trojko R, Sekulic A, Furic K, Mater. Sci. Eng. B, 47, 33, 1997
  16. Kaliwoh N, Zhang JY, Boyd IW, Surf. Coat. Technol., 125, 424, 2000
  17. Djaoued Y, Taj R, Bruning R, Badilescu S, Ashrit PV, Bader G, Vo-Van T, J. Non-Cryst. Solids, 297, 55, 2002
  18. Socrates G, Infrared Characteristics Group Frequencies, John Wiley & Sons, New York, 1980
  19. Pal B, Sharon M, Nogami G, Mater. Chem. Phys., 59, 254, 1999
  20. Ivanova T, Harizanova A, Solid State Ion., 138(3-4), 227, 2001
  21. Palmisano L, Augugliaro V, Sclafani A, Schiavello M, J. Phys. Chem., 92, 6710, 1988
  22. Wagner CD, Riggs WM, Davis LE, Moulders JF, Mullenberg GE, Handbook of X-ray Photoelectron Spectroscopy, edited by Mullenberg, G.E., Perkin-Elmer Corporation, Eden Prairie, MN, 1979
  23. Spevack PA, McIntyre NS, J. Phys. Chem., 97, 11020, 1993
  24. Galtayries A, Wisniewski S, Grimblot J, J. Electron Spectroscopy Related Phenomena, 87, 31, 1997
  25. Jong AM, Borg HJ, IJzendoorn LJ, Soudant VGFM, Beer VHJ, Veen JAR, Niemantsverdriet JW, J. Phys. Chem., 97, 6477, 1993
  26. Murata Y, Fukuta S, Ishikawa S, Yokoyama S, Sol. Energy Mater. Sol. Cells, 62, 157, 2000
  27. Gao Y, Thevuthasan S, McCready DE, Engelhard M, J. Cryst. Growth, 212, 178, 2000
  28. Atashbar MZ, Sun HT, Gong B, Wlodarski W, Lamb R, Thin Solid Films, 326(1-2), 238, 1998
  29. Colton RI, Rabalais JW, Inorg. Chem., 15, 236, 1976
  30. Su L, Dai Q, Lu Z, Spectrochim. Acta : A, 55, 2179, 1999
  31. Siokou A, Leftheriotis G, Papaefthimiou S, Yianoulis P, Surf. Sci., 482-485, 294, 2001
  32. Colton J, Wayne J, Inorg. Chem., 15, 236, 1976
  33. Choi WY, Termin A, Hoffmann MR, J. Phys. Chem., 98(51), 13669, 1994
  34. Gratzel M, Howe RF, J. Phys. Chem., 94, 2566, 1990
  35. Serpone N, Lawless D, Disdier J, Herrmann JM, Langmuir, 10(3), 643, 1994
  36. Karakitsou KE, Verykios XE, J. Phys. Chem., 97, 1184, 1993