Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.41, No.4, 503-508, 2003
금속(Ag, Cu, Co)함유 활성탄소섬유의 미세공도와 금속입자의 거동
Microporosity and Behaviors of Metal Particles in Metal (Ag, Cu, Co)-Containing Activated Carbon Fibers
개질된 석유 피치에 금속(Ag, Cu, Co)염들을 혼합하여 전구체 피치를 만들고 용융방사하여 금속함유 탄소섬유를 만든 후, 이를 수증기로 활성화하여 활성탄소섬유를 만들고 미세공도와 금속 입자의 거동을 관찰하였다. 전구체 피치의 용융방사온도는 금속함량이 증가함에 따라 선형적으로 증가했다. Co와 Cu가 함유된 탄소섬유는 공기분위기에서 400 ℃에서부터, Ag이 함유된 탄소섬유는 금속이 함유되지 않은 탄소섬유와 같이 480 ℃에서부터 급격히 분해되었다. 금속을 함유하지 않은 활성탄소섬유의 평균 기공과 비표면적은 20 Å, 1,100 m(2)/g이었다. 금속함유 활성탄소섬유는 금속의 촉매적 가속 때문에 활성화 속도가 크고 평균기공직경과 중기공 비율은 커졌으나, 비표면적은 감소하였다. 금속 함유 활성탄소섬유는 1 wt%가 함유되어도 각각의 금속에 대응하는 피크가 나타났다. 활성탄소섬유내에서 은 입자들은 비교적 균일하게 분포되었으나, 구리와 코발트 입자들은 일부가 합체하여 큰 입자를 형성하는 경향을 보였으며, 합체된 구리입자들은 수증기 활성화동안 일부가 섬유로부터 빠져나와 표면에 거대 기공을 남겼다.
Metal (Ag, Cu, Co)salts were mixed to reformed petroleum pitches for production of metal-containing carbon fibers. The carbon fiber was steam activated to investigate the microporosity and the behaviour of metal particles in activated carbon fiber. The melt spinning temperature of precursor pitch linearly increased as the metal content increased. Cobalt and copper-containing carbon fibers were decomposed after 400 ℃, silver-containing and non-metal containing carbon fibers were decomposed after 480 ℃ in air. The average pore diameter and specific surface area of non-metal containing activated carbon fibers were 20 Å and 1,100 m(2)/g. The activation rates of metal-containing carbon fibers increased by catalytic acceleration of metals. Average pore diameter and mesopore fraction of metal-containing activated carbon fiber increased as the metal content increased, however, specific surface area decreased. The metal-containing activated carbon fibers showed peaks corresponding to their own metal. Silver particles were uniformly distributed in activated carbon fibers, while copper and cobalt particles tended to coalesence and some of coalesced copper exited from activated carbon fibers resulting in macropores on the surface of activated carbon fibers during the steam activation.
[References]
  1. Oya A, Yoshida S, Alcaniz-Monge J, Linares-Solano A, Carbon, 34, 53, 1996
  2. Hong EH, Jung YH, Lee KH, Korean J. Chem. Eng., 17(2), 237, 2000
  3. Kyotani T, Carbon, 38, 269, 2000
  4. Ozaki J, Endo N, Ohizumi W, Yoshida S, Carbon, 35, 1031, 1997
  5. Ryu SK, Kim SY, Gallego N, Edie DD, Carbon, 37(9), 1619, 1999
  6. Eom SY, Ryu SK, HWAHAK KONGHAK, 39(1), 54, 2001
  7. Cho TH, "Spinning of Silver-Containing Reformed Pitch," Master Dissertation, Chungnam National Univ., Daejeon, Korea, 2000
  8. Kim C, Lee SH, Kim YM, Yang KS, Carbon Sci., 2(3-4), 170, 2001
  9. Edie DD, Dunham MG, Carbon, 27(5), 647, 1989
  10. Eom SY, Cho TH, Cho KH, Ryu SK, HWAHAK KONGHAK, 38(5), 591, 2000
  11. Choi SY, Kim KH, Ryu SK, "Adsorption of Chemical Warfare Agent Simulants by ACF," Proceedings, 6th Int. Sym. on Separation Technology, Tokyo, Japan, Oct. 2-6, 2002
  12. Gergg SJ, Sing KSW, Adsorption, Surface Area and Porosity, 2nd ed., Academic Press Inc., New York, NY, 1982
  13. Lee JM, Carbon Sci., 1(3-4), 178, 2001