Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.41, No.4, 497-502, 2003
생분해성 폴리락타이드/폴리에틸렌글리콜 공중합체 마이크로캡슐의 제조와 방출거동에 대한 연구
Preparation of Microcapsules and Release Behaviors of Biodegradable Poly(L-lactide)/Poly(ethylene glycol) Copolymers
본 연구에서는 생분해성 poly(L-lactide) (PLA)/poly(ethylene glycol) (PEG) 마이크로캡슐을 액중건조법으로 제조하고, PLA 마이크로캡슐에 PEG를 첨가함에 따른 분해거동, 크기분포 그리고 방출거동에 미치는 영향을 살펴보았다. 그 결과, PLA/PEG 공중합체는 PLA보다 친수성이 크게 나타났고, 낮은 유리전이 온도를 가짐을 알 수 있었다. PLA/PEG 마이크로캡슐의 표면은 PLA 마이크로캡슐보다 부드럽지 못했고, 제조된 PLA와 PLA/PEG 마이크로캡슐의 평균크기는 40과 57 μm이었으며, 또한 구형의 형태를 나타내는 것이 image analyzer와 SEM을 통하여 관찰되었다. PLA/PEG 마이크로캡슐의 약물 방출거동은 UV/Vis. spectra를 통하여 살펴보았고, 방출 속도는 PEG의 첨가에 따라 두드러지게 증가하였는데, 이는 친수성기의 증가와 PEG의 팽윤성으로 설명되어질 수 있다.
In this work, biodegradable poly(L-lactide) (PLA)/poly(ethylene glycol) (PEG) microcapsules were prepared by emulsion solvent evaporation method. The effect of PEG segments on the degradation, size distribution, and release behavior of the microcapsules was studied. According to the experimental results, PLA/PEG copolymers were more hydrophilic and exhibited lower glass transition temperatures compared to PLA homopolymer. The surface of PLA/PEG microcapsules was not as smooth as that of PLA microcapsules. The mean diameters of the PLA and PLA/PEG microcapsules were 40 and 57 μm, respectively. The spherical forms were observed by image analyzer and scanning electron microscope (SEM). Drug release from microcapsules was determined by UV/Vis spectra. It was found that the drug release rates of the microcapsules were significantly increased with adding of PEG, which could be attributed to the increase in their hydrophilicity and swelling characteristics.
[References]
  1. Arshady R, "Microspheres Microcapsules and Liposomes," Citus Books, London, 1999
  2. Langer R, Science, 249, 1527, 1990
  3. Gombotz WR, Pettit DK, Bioconjug. Chem., 6, 332, 1995
  4. Dunn RL, English JP, Strobel JD, Cowsar DR, Tice TR, "Preparation and Evaluation of Lactide/Glycolide Copolymers for Drug Delivery, in Polymers in Medicine," vol. 3, Eds. C. Migliaresi et al., Elsevier, Amsterdam, 149-160, 1988
  5. Huang YY, Chung TW, Tzeng TW, Int. J. Pharm., 182, 93, 1999
  6. Dodmeier R, McGinity JW, Pharm. Res., 4, 465, 1987
  7. Juni K, Ogata J, Nakano M, Nakano TY, Ichihara T, Mori K, Akagi M, Chem. Pharm. Bull., 33, 313, 1985
  8. Ruiz JM, Tissier B, Benoit JP, Int. J. Pharm., 49, 69, 1989
  9. Bodmeier R, Chen H, J. Pharm. Pharmacol., 40, 754, 1988
  10. Brandau T, Int. J. Pharm., 242, 179, 2002
  11. Athanasiou KA, Niederauer GG, Agrawal CM, Biomaterials, 17, 93, 1996
  12. Park SJ, Shin YS, Lee JR, J. Colloid Interface Sci., 241(2), 502, 2001
  13. Jalil R, Nixon JR, J. Microencapsul., 7, 297, 1990
  14. Okada H, Miyamoto M, Heya T, Inoue Y, Kamei S, Ogawa Y, Taguchi H, J. Control. Release, 28, 121, 1994
  15. Omelezuk MO, McGinity JW, Pharm. Res., 9, 26, 1992
  16. Shah SS, Cha Y, Pitt CG, J. Control. Release, 38, 261, 1992
  17. Mauduit J, Bukh N, Vert M, J. Control. Release, 23, 221, 1993
  18. Esposito E, Cortesi R, Bortolotti F, Menegatti E, Nastruzzi C, Int. J. Pharm., 129, 263, 1996
  19. Li SM, Garreau H, Vert M, J. Mater. Sci. Mater. Med., 1, 123, 1990
  20. Zhu KJ, Lin X, Yang S, J. Appl. Polym. Sci., 39, 1, 1990
  21. Sah H, Chien YW, J. Pharm. Sci., 84, 1353, 1995