Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.41, No.4, 426-431, 2003
탄화수소에 의한 NO의 선택적 촉매 환원 반응에서 Pt/MCM-48 촉매의 반응 메커니즘에 관한 연구
Studies on Reaction Mechanism of Pt/MCM-48 Catalysts in Selective Catalytic Reduction of NO by Hydrocarbon
기본형의 Si-MCM-48에 알루미늄 치환량과 귀금속 담지량의 변화에 따라 다양한 촉매를 제조하였고, 이를 탄화수소에 의한 선택적 촉매 환원(HC-SCR) 반응에 적용하여 각각의 NO 환원반응 특성을 비교 고찰하였다. Pt/MCM-48 촉매의 NO 환원 활성을 고찰한 결과, 문헌상 보고 되고 있는 Pt/ZSM-5 촉매를 이용한 NO의 제거 활성과 비교하여 매우 우수한 결과를 보였다. 또한 5 vol% 이하의 산소 조건에서 그 활성이 현저하였으며, 특이하게 최고 활성에 도달한 후에 반응온도가 600 ℃ 까지 증가하여도 계속하여 그 활성을 유지하였다. XRD, TPD, TGA, XPS 등의 특성화를 통해 촉매의 표면 특성 및 반응 mechanism에 관한 연구를 수행하였으며, 이러한 결과로부터 Pt/MCM-48 촉매가 기존 촉매보다 일정 산소 조건에서 우수한 성능을 보이는 것은 담체의 표면 산특성과 촉매 고유의 redox mechanism에 기인한 것으로 해석하였다.
Pt supported on MCM-48 was tested as a new catalyst for hydrocarbon-SCR process. MCM-48 is a new support material of the catalyst for SCR. Characterization and de-NOx activity test were performed for the newly synthesized MCM-48-supported catalysts. Pt(1 wt%)/MCM-48 showed 90% of NO reduction at 250-500 ℃. It should be concluded, from what has been said above, that Pt/MCM-48 catalysts showed higher NO reduction conversion than zeolite based catalyst, and it was not affected by 5 vol% O2 concentration and water vapor addition. It would be supposed that sustention of activity in that oxygen condition might be caused by surface acidic characteristic and its characteristic redox mechanism.
[References]
  1. Vogt ETC, vanDillen AJ, Greus JW, Janssen JJ, Catal. Today, 2, 569, 1988
  2. Byrne JW, Chen JM, Sperenello BK, Catal. Today, 13, 33, 1992
  3. Lietti L, Savachula J, Forzatti P, Ramis G, Bregani P, Catal. Today, 17, 131, 1992
  4. Choi H, Ham SW, Nam IS, Kim YG, Sim JH, Ha BH, HWAHAK KONGHAK, 34(1), 91, 1996
  5. Bosch H, Janssen F, Catal. Today, 2, 369, 1988
  6. Sato S, Yu Y, Yahiro H, Mizuno N, Iwamoto M, Appl. Catal. A: Gen., 70(1), L1, 1991
  7. Bennett CJ, Bennett PS, Golunski SE, Hayes JW, Walker AP, Appl. Catal. A: Gen., 86(2), L1, 1992
  8. Ansell GP, Diwell AF, Golunski SE, Hayes JW, Rajaram RR, Truex TJ, Walker AP, Appl. Catal. B: Environ., 2(1), 81, 1993
  9. Miyamoto A, Himei H, Oka Y, Maruya E, Katagiri M, Vetrivel R, Kubo M, Catal. Today, 22, 87, 1994
  10. Kikuchi E, Yogo K, Catal. Today, 22, 73, 1994
  11. Schiesser W, Vinek H, Jentys A, Appl. Catal. B: Environ., 33(3), 263, 2001
  12. Shen SC, Kawi S, J. Phys. Chem. B, 103(42), 8870, 1999
  13. Shen SC, Kawi S, Catal. Today, 68(1-3), 245, 2001
  14. Pena ML, Kan Q, Corma A, Rey F, Microporous Mesoporous Mater., 44, 9, 2001
  15. Zhao D, Goldfarb D, J. Chem. Soc.-Chem. Commun., 8, 875, 1995
  16. Han SH, Yang JS, Choung SJ, HWAHAK KONGHAK, 38(5), 578, 2000
  17. Kumar D, Schumacher K, deFresuevouHohenesche C, Grun M, Unger KK, Colloids Surf. A: Physicochem. Eng. Asp., 187, 109, 2001
  18. Dapurkar SE, Badamali SK, Selvam P, Catal. Today, 68(1-3), 63, 2001
  19. Yang H, Ping ZH, Niu GX, Jiang HW, Long YC, Langmuir, 15(16), 5382, 1999
  20. Shen SC, Kawi S, J. Catal., 213(2), 241, 2003
  21. Burch R, Milliugton P, Appl. Catal. B: Environ., 2, 101, 1993
  22. Long RQ, Yang RT, Catal. Lett., 52(1-2), 91, 1998
  23. Yvonne T, Beate B, Jens W, Microporous Mesoporous Mater., 30, 3, 1999
  24. Inui T, Iwamoto S, Kojn S, Shimizu S, Hirabayashi T, Catal. Today, 22, 41, 1994