Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.36, No.2, 287-292, 1998
분기추출법을 이용한 토양으로부터 휘발성 유기성분의 제거
Vapor Extraction of Volatile Organic Compounds from Soil
분기추출법을 이용하여 염소계 휘발성 유기성분인 trichloroethylene과 trichloroethane을 토양으로부터 추출하고 그 과정을 이해하기 위하여 토양의 기상흡착 및 탈착행태를 규명하였다. 전선분석 크로마토그래피에 근거한 동적반응방법을 도입하여 토양 충전층의 흡착등온선을 구하였고 등온선의 형태로부터 토양의 기상흡착은 물질전달 저항과 물질이동영역이 극소화된 과정임을 알았다. 토양의 흡착등온선은 BET type II 형태로 나타났으며 Brunauer가 제안한 흡착등온식을 도입하여 토양의 반층 흡착량과 이론적 다층 흡착층의 수를 구하였다. 분기추출과정을 나타내는 탈착곡선은 토양의 초기 흡착량에 따라 단순 및 단계적 감소곡선을 나타내는 이력현상을 보였다. 토양의 분기추출과정을 일반 다공성 흡착제의 흡탈착과정에 대한 수학적 모델을 이용하여 나타내었고 또한 물질전달 저항과 축방향분산을 무시한 국부평형이론을 도입하여 탈착곡선을 예측하였다. 수분을 함유한 습식분기추출은 단층 흡착층의 탈착을 촉진시켜 총 추출률의 증가를 가져왔다.
Vapor extraction of chlorinated volatile organic compounds from soil was investigated by performing adsorption and desorption of trichloroethylene and trichloroethane. The adsorption breakthrough curves were obtained using a dynamic response technique based on the frontal analysis chromatography. The shape of the breakthrough curves indicated that the adsorption process was the system of low mass transfer resistance and axial dispersion effect. The adsorption isotherms were BET type II, which showed that the process involved the monolayer adsorption followed by the multilayer adsorption. Two types of desorption profiles indicated the hysteresis effect of vapor extraction process. The vapor extraction process was simulated by mathematical models including the local equilibrium theory. The presence of moisture in vapor stream increased the overall efficiency of the soil vapor extraction.
[References]
  1. Wilson DJ, Clarke AN, Clarke JH, Sep. Sci. Technol., 23, 991, 1988
  2. Lin TF, Little JC, Nazaroff WW, Environ. Sci. Technol., 28, 322, 1994
  3. Farrell J, Reinhard M, Environ. Sci. Technol., 28, 53, 1994
  4. Petersen TA, Curtis JT, Soil Vapor Extraction: Reference Handbook, EPA Report EPA/540/2-91/003, 1991
  5. Malot JJ, Cleanup of a Gasoline Contaminated Site Using Vacuum Extraction Technology, "Petrolenum Contaminated Soils," Calabrese, E.J. and Kostecki, P.T. eds, Lewis Publishers, Chelsea, MI, 1989
  6. Ball R, Wolf S, Environ. Sci. Technol., 9, 187, 1990
  7. Thornton JS, Wooton WL, J. Environ. Sci. Health, 17, 31, 1982
  8. Rhue RD, Rao PS, Chemosphere, 21, 537, 1991
  9. Ruthven DM, "Principles of Adsorption and Adsorption Processes," John Wiley & Sons, New York, 1984
  10. Brunauer S, Deming LS, Deming WE, Teller E, J. Am. Chem. Soc., 62, 1723, 1940
  11. Thibaud-Erkey C, Guo Y, Erkey C, Akgerman A, Environ. Sci. Technol., 30, 2127, 1996
  12. Yu Q, Wang NHL, Comput. Chem. Eng., 13, 915, 1989
  13. Madras G, Thibaud C, Erkey C, Akgerman A, AIChE J., 40(5), 777, 1994
  14. Suzuki M, Smith JM, Chem. Eng. J., 3, 256, 1972
  15. Smith JM, "Chemical Engineering Kinetics," 3rd ed., McGraw-Hill, New York, 1981
  16. Wakao N, Kaguei S, "Heat and Mass Transfer in Packed Beds," Gordon and Breach Science Publishers, New York, 1982
  17. Thibaud C, Erkey C, Akgerman A, Environ. Sci. Technol., 27, 2373, 1993