Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.36, No.2, 235-240, 1998
ACF-Cartridge를 이용한 수중 잔류 염소 제거
Removal of Residual Chlorine from Tap Water by Activated Carbon Fiber Cartridge
음용수의 염소 소독 후에 생성되는 잔류염소(residual chlorine)를 활성탄소섬유 카트릿지를 이용하여 제거하는 동안의 흡착 거동을 연구하였다. 흡착평형 자료는 회분식실험을 이용하여 구하였다. 활성탄소섬유는 약 1,600m2/g의 비표면적과 7.7Å의 평균세공반경 및 0.63 ㎤/g의 세공 부피를 소유하고 있으며, 잔류염소의 흡착량은 약 1.5(g/g-ACF)이었다. 활성탄소섬유 카트릿지를 사용한 잔류염소의 제거에서, 파과점 이후의 파과곡선은 급격하게 상승하였다. 100g의 활성탄소섬유로 성형된 한 개의 카트릿지가 2.0ppm의 잔류염소를 함유한 수돗물을 0.2ppm의 잔류염소가 유출될 때까지 처리한 양은 평균 30ton으로서, 파과점에서의 카트릿지의 효율은 이론적 최대능력의 64%이었다. ACF 카트릿지의 재생은 뜨거운 물의 역세척으로 가능하며 물의 온도가 높을수록, 역세척의 수압이 높을수록 유리하였다. 90℃의 물로 2.5l/min 으로 역세척한 재생 카트릿지의 수돗물 중 잔류염소의 흡착제거 능력은 새 카트릿지의 62%로 나타났다. 활성탄소섬유 카트릿지는 잔류염소의 제거능력이 탁월하며 재생하여 사용할 수 있다.
Adsorption behavior of activated carbon fiber cartridge for residual chlorine after chlorination of drinking water was studied. Adsorption equilibrium data were obtained from batch experiments. The ACF used for cartridge shows 1,600 ㎡/g specific surface area, 7.7Å average pore radius, 0.63 ㎤/g total pore volume, and 1.5 g/g-ACF adsorption amount of residual chlorine. In removal of residual chlorine from tap water by ACF cartridge, the breakthrough curves were rapidly increased from C/Co=0.1 to C/Co=0.5 and slowly approached C/Co=1.0. One ACF cartridge was made of 100g activated carbon fiber and a total amount of treated water from 2.0 ppm to 0.2 ppm(breakpoint, C/Co=0.1) by one ACF cartridge was 30ton. The adsorption efficiency of ACF cartridge was 64% of its maximum theoretical adsorption capacity. Regeneration efficiency increased as high as the temperature and back pressure of water. The adsorption efficiency of regenerated cartridge at 90℃, 2.5 l/min was 62% compared with a new one for the removal of residual chlorine from tap water.
[References]
  1. Butterfield CT, "Bactericidal Properties of Chloramines and Free Chlorine in Water," Pub, Health Rp ts., Vol. 63, 1948
  2. Environmental Department: The Rules on Waterwork's Sanitation Management, 34, 702-1, 1996
  3. Kiko A, Jpn. Waterwork-Assoc. Magazine, 557, 25, 1981
  4. Kim H, Park HC, Moon H, HWAHAK KONGHAK, 33(6), 764, 1995
  5. Weber WJ, "Physicochemical Process for Water Quality Control," Chap. 5, Wiley Interscience, New York, 413, 1972
  6. Chae JS, Ko KR, Jung CH, Rhee BS, Ryu SK, HWAHAK KONGHAK, 31(1), 99, 1993
  7. Kim YO, Ko KR, Park YT, Ryu SK, HWAHAK KONGHAK, 30(3), 347, 1992
  8. Arnold EG, Lenore SC, Andrew DE, "Standard Methods," 4500-CI G. DPD Colorimetric Method, American Public Health Association, 1992
  9. Moon H, Park HC, Lee WK, Korean J. Chem. Eng., 7(4), 250, 1990
  10. Motoyuki S, "Adsorption Engineering," Kodansha LTD., Tokyo, 1990
  11. Yang RT, "Gas Separation by Adsorption Processes," Butterworths, 1987
  12. Lee JK, Ryu SK, Daedong AC Report(I), Chungnam Univ., 1996
  13. McCabe WL, Smith JC, Peter H, "Unit Operations of Chemical Engineering," Chap. 25, McGraw-Hill, Inc., 1985