Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.36, No.2, 196-205, 1998
N2/O2 분리를 위한 Rapid Pressure Swing Adsorption 공정의 주기 시간 및 원료 가스 압력의 최적화
Optimisation of Cycle Time and Feed Pressure on Rapid Pressure Swing Adsorption in Separation of N2/O2
공기로부터 산소를 분리하는 RPSA(Rapid Pressure Swing Adsorption) 공정의 최적 운전 전략을 수립하기 위하여 수학적 방법에 의거하여 최적화를 수행하였다. 이를 위한 전 단계로 RPSA 공정에 대한 동적 상태 및 주기적 정상 상태에 대한 상세 수학적 모델을 수립하고 동적 모사를 수행하였다. 동적 모사를 통하여 대상 공정의 동적 응답을 해석하고, 이에 따라 공정의 성능을 측정할 수 있는 성능 지수를 도입하였다. 수립된 수학적 모델과 공정의 운전 조건 등을 고려하여 목적 함수, 운전 및 설계의 구속 조건 등을 도입하였으며 이를 바탕으로 최적화 문제를 수립하였다. RPSA와 같은 주기적 공정은 연속 공정의 경우와 같은 정상 상태가 존재하지 않으므로 주기적 정상 상태를 구하고 이에 대하여 최적화를 수행하였다. 최적화 문제의 수치적 해를 구하기 위하여 control vector parameterisation 기법이 사용되었다. 최적 주기 시간 및 원료 가스의 압력을 구하였으며, 다른 운전 조건의 여러 경우와 비교하였다. 수학적 방법에 의한 최적화를 통하여 얻어진 결정 변수의 값이 주어진 구속 조건과 모델식을 만족시키며 목적 함수를 극대화시키는 것을 확인하였다.
Optimisation is carried out in order to build optimal strategy for operation of RPSA process separating oxygen from air. The rigorous mathematical model of the process is formulated and dynamic simulation is performed as a previous step of optimisation. In conjunction with the measurement of operational performance, performance indices are introduced based on the analysis of the dynamic response of the system. Considering design and operation issues, objective function and constraints are identified and their mathematical statements are described. Intrinsic behaviour of RPSA process shows cyclic steady state, in which conditions at the end of each cycle are identical to those at its start in both gas and solid phase. This is the state in which we are interested and optimisation is carried out for this state. Control vector parameterisation method is employed as a solution method for the given problem at cyclic steady state. From optimisation, optimal cycle time and feed pressure are obtained and the results are compared with those from other operating conditions. On the basis of the numerical experiment, it is concluded the optimal values of decision variables obtained from optimisation maximise the objective function in the connection with given constraints.
[References]
  1. Yang RT, "Gas Separation by Adsorption Process," Butterworth Publishers, 1987
  2. Keller GE, Industrial Gas Separations (T.E. Whyte, Jr., C.M. Yon, and E.H. Wagener, eds), ACS Symp. Ser. No., 223, 145, 1983
  3. Ruthven DM, Farooq S, Knaebel KS, "Pressure Swing Adsorption," VCH, New York, 1994
  4. Suzuki M, "Adsorption Engineering," Kodansha Ltd., Tokyo, 1990
  5. Skarstorm CW, "Heatless Franctionation of Grass over Solid Sorbents," In Recent Developments in Separation Science (N.N. Li, ed.) Vol. 2, Cleveland CRC Press, 1972
  6. Jones RL, Keller GE, Wells RC, U.S. Patent, 4,194,892, 1980
  7. Keller GE, Jones RL, ACS Symp. Ser., 135, 275, 1980
  8. Jones RL, Keller GE, J. Separ. Proc. Tech., 2, 17, 1981
  9. Kikkinides ES, Yang RT, Ind. Eng. Chem. Res., 30, 1981, 1991
  10. Kikkinides ES, Yang RT, Ind. Eng. Chem. Res., 32, 2714, 1993
  11. Kikkinides ES, Yang RT, Ind. Eng. Chem. Res., 32, 2365, 1993
  12. Kikkinides ES, Ritter JA, Yang RT, J. Chin. Inst. Chem. Eng., 22, 239, 1991
  13. Kikkinides ES, Sikavitsas VI, Yang RT, Ind. Eng. Chem. Res., 34(1), 255, 1995
  14. Levan MD, Ind. Eng. Chem. Res., 34(8), 2655, 1995
  15. Liu YJ, Ritter JA, Ind. Eng. Chem. Res., 35(7), 2299, 1996
  16. Chue KT, Kim JN, Yoo YJ, Cho SH, Yang RT, Ind. Eng. Chem. Res., 34(2), 591, 1995
  17. Diagne D, Goto M, Hirose T, Ind. Eng. Chem. Res., 34(9), 3083, 1995
  18. Kim WG, Yang J, Han S, Cho C, Lee CH, Lee H, Korean J. Chem. Eng., 12(5), 503, 1995
  19. Yang J, Han S, Cho C, Lee H, HWAHAK KONGHAK, 33(1), 56, 1995
  20. Han S, Lee H, HWAHAK KONGHAK, 33(6), 720, 1995
  21. Lu ZP, AIChE J., 39, 1483, 1993
  22. Turnock PH, Kadlec RH, AIChE J., 17, 335, 1971
  23. Kowler E, Kadkec RH, AIChE J., 18, 1207, 1972
  24. Nilchan S, Ph.D. Dissertation, University of London, Lonon, UK, 1997
  25. Alpay E, Ph.D. Thesis, University of Cambridge, 1992
  26. Doong SJ, Yang RT, AIChE Symp. Ser., 84, 145, 1988
  27. Nilchan S, Pantelides CC, IChemE, Research Event, 1994
  28. Kvamsdal HM, Hertzberg T, Comput. Chem. Eng., 21(8), 819, 1997
  29. McCabe WL, Smith JC, Harriott P, "Unit Operations of Chemical Engineering," McGraw-Hill, 4th edition, 1985
  30. Schiesser WE, "The Numerical Method of Lines," Academic Press, New York, 1991
  31. Finlayson BA, Nonlinear Analysis in Chemical Engineering, McGraw-Hill, New York, 1980
  32. Jarvis RB, Pantelides CC, Technical Report, Centre for Process Systems Engineering, Imperial College, London, 1992
  33. Oh M, Pantelides CC, Comput. Chem. Eng., 20(6-7), 611, 1996
  34. Vassiliadis VS, Sargent RW, Pantelides CC, Ind. Eng. Chem. Res., 33(9), 2111, 1994
  35. Vassiliadis VS, Sargent RW, Pantelides CC, Ind. Eng. Chem. Res., 33(9), 2123, 1994
  36. Chen CL, Macchieto S, Technical Report, Centre for Process Systems Engineering, Imperial College, London, 1989
  37. Hwang DJ, Oh M, Moon I, HWAHAK KONGHAK, submitted, 1997